Breaking Class Barriers: Efficient Dataset Distillation via Inter-class Feature Compensator

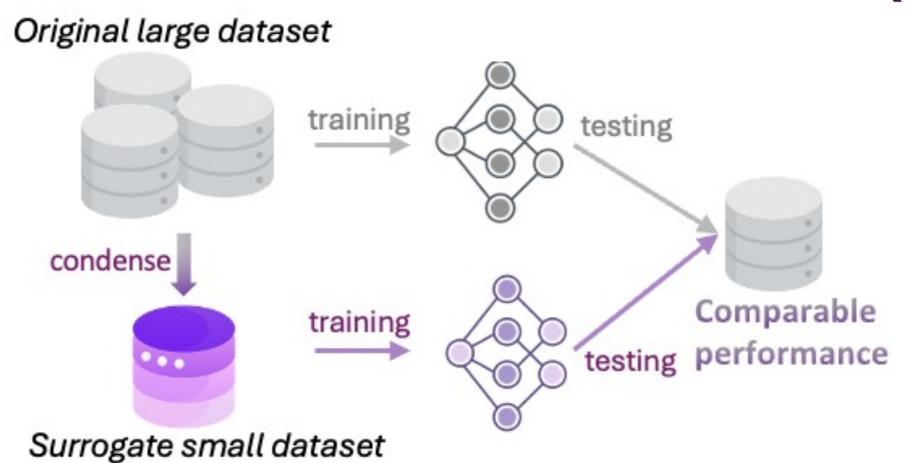
Xin Zhang^{1,2}, Jiawei Du^{1,2}, Ping Liu³, Joey Tianyi Zhou^{1,2*}

¹Centre for Frontier AI Research (CFAR), A*STAR, Singapore,

²Institute of High Performance Computing (IHPC), A*STAR, Singapore, ³University of Nevada, Reno

Background

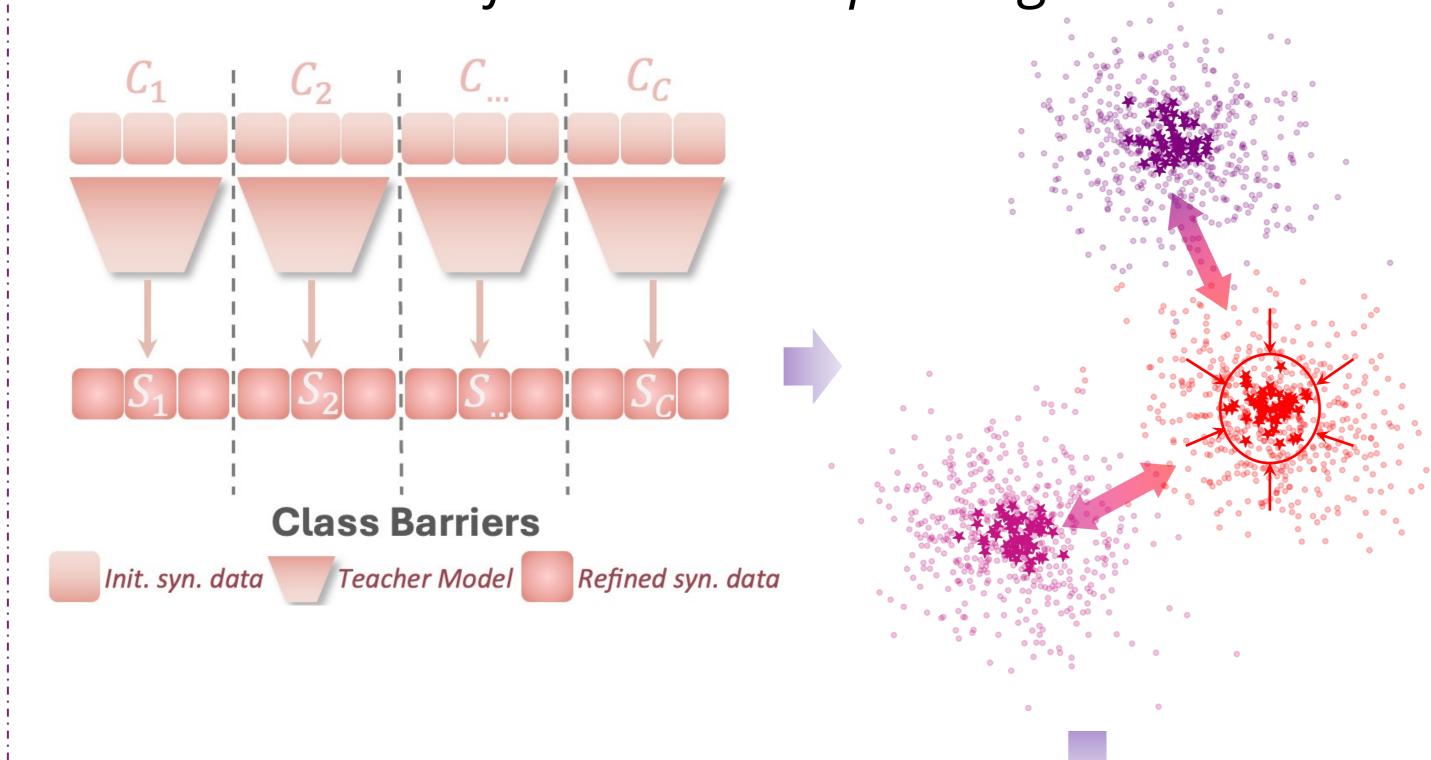
What is Dataset Distillation (DD)?

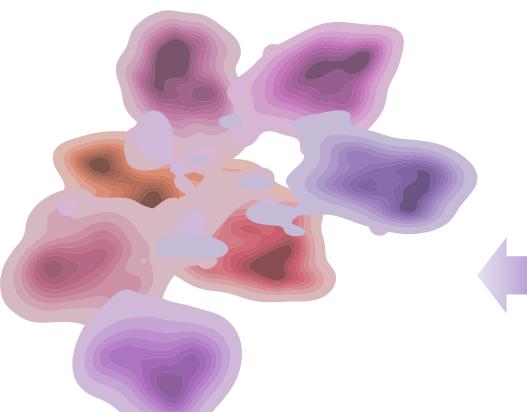


Dataset distillation is to **synthesize** a **tiny** and compact dataset from a given real and large dataset, such that the former can a **comparable performance** as the latter.

How do existing methods achieve DD?

"One instance for one class" paradigm



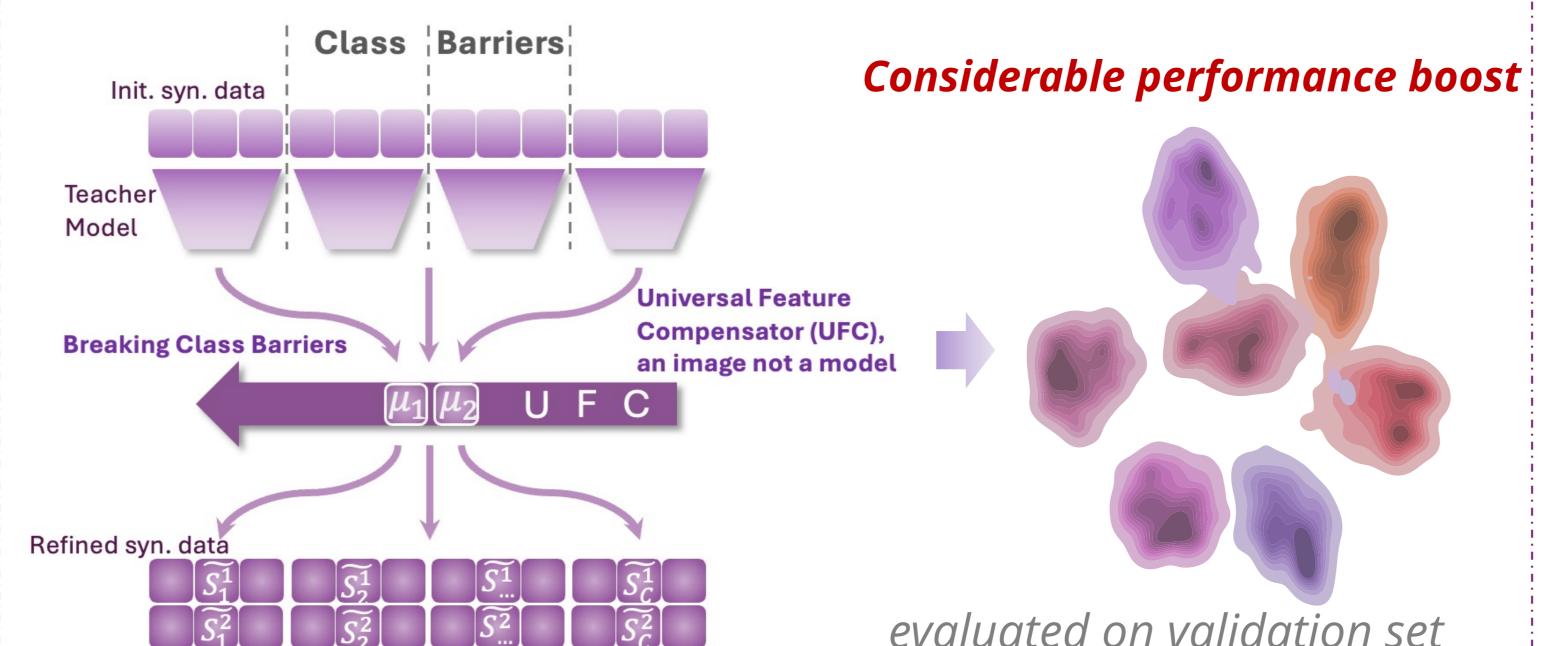


evaluated on validation set

- Duplicated intra-class features
- Oversight of inter-class features
- Inefficient Utilization of the Distillation Budget
- Collapsed feature diversity

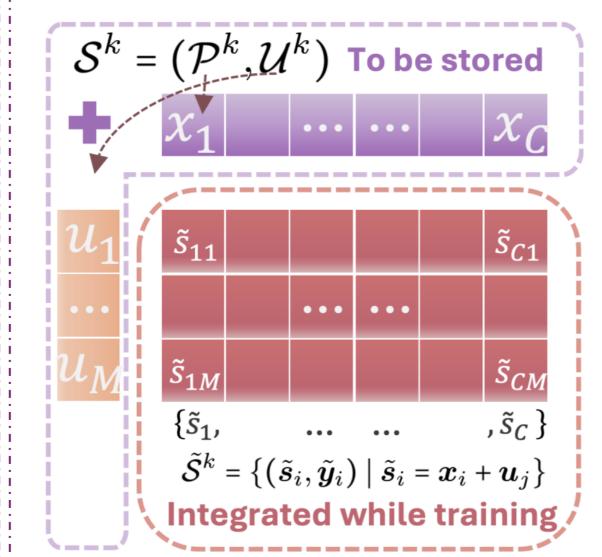
Proposed Method

Breaking Class Barriers: Efficient DD via Inter-class Feature Compensator



evaluated on validation set

Implementation



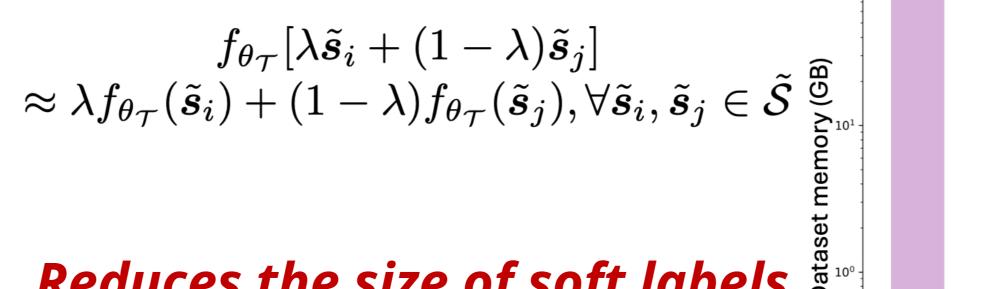
Design:

$$ilde{\mathcal{S}}^k = \{ (ilde{m{s}}_i, ilde{m{y}}_i) \mid ilde{m{s}}_i = m{x}_i + m{u}_j, \ ext{for each } m{x}_i \in \mathcal{P}^k ext{ and each } m{u}_j \in \mathcal{U}^k \}$$

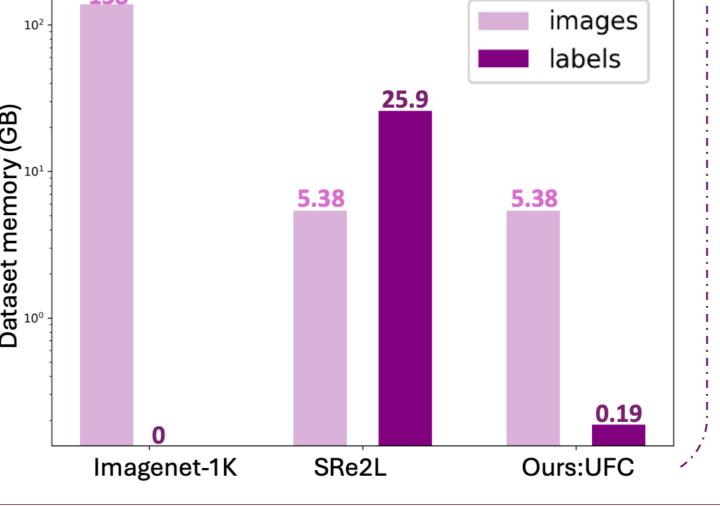
Optimization:

$$\begin{aligned} & \underset{\boldsymbol{u}_{j} \in \mathbb{R}^{d}}{\operatorname{arg\,min}} \sum_{(\boldsymbol{x}_{i}, \boldsymbol{y}_{i}) \in \mathcal{P}^{k}} \left[\ell\left(f_{\theta_{\mathcal{T}}}, \boldsymbol{x}_{i} + \boldsymbol{u}_{j}, \boldsymbol{y}_{i}\right) + \alpha \mathcal{L}_{\mathrm{BN}}\left(f_{\theta_{\mathcal{T}}}, \boldsymbol{x}_{i} + \boldsymbol{u}_{j}\right) \right], \\ & \text{where} \quad \mathcal{L}_{\mathrm{BN}}\left(f_{\theta_{\mathcal{T}}}, \boldsymbol{x}_{i} + \boldsymbol{u}_{j}\right) = \sum_{l} \|\mu_{l}(\tilde{\mathcal{S}}_{j}^{k}) - \mu_{l}(\mathcal{T})\|_{2} \\ & + \sum_{l} \|\sigma_{l}^{2}(\tilde{\mathcal{S}}_{j}^{k}) - \sigma_{l}^{2}(\mathcal{T})\|_{2} \end{aligned}$$

Efficient static labeling:



Reduces the size of soft labels by up to 99%

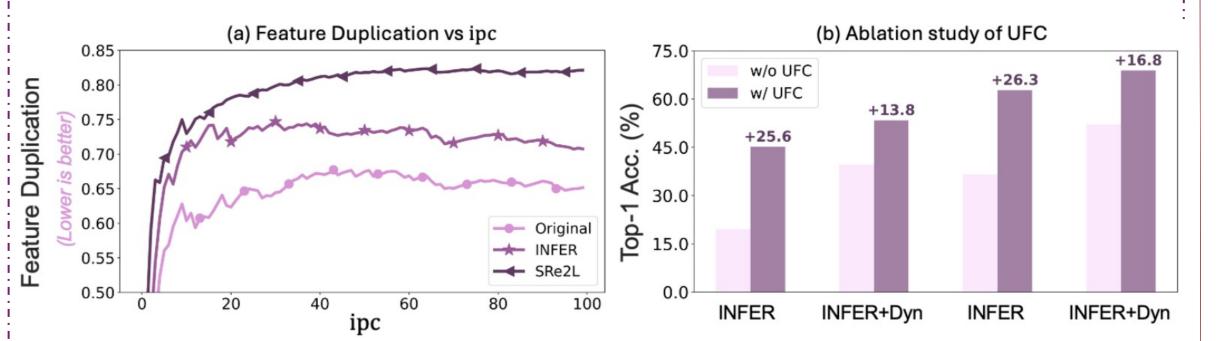


Experiments

Results:

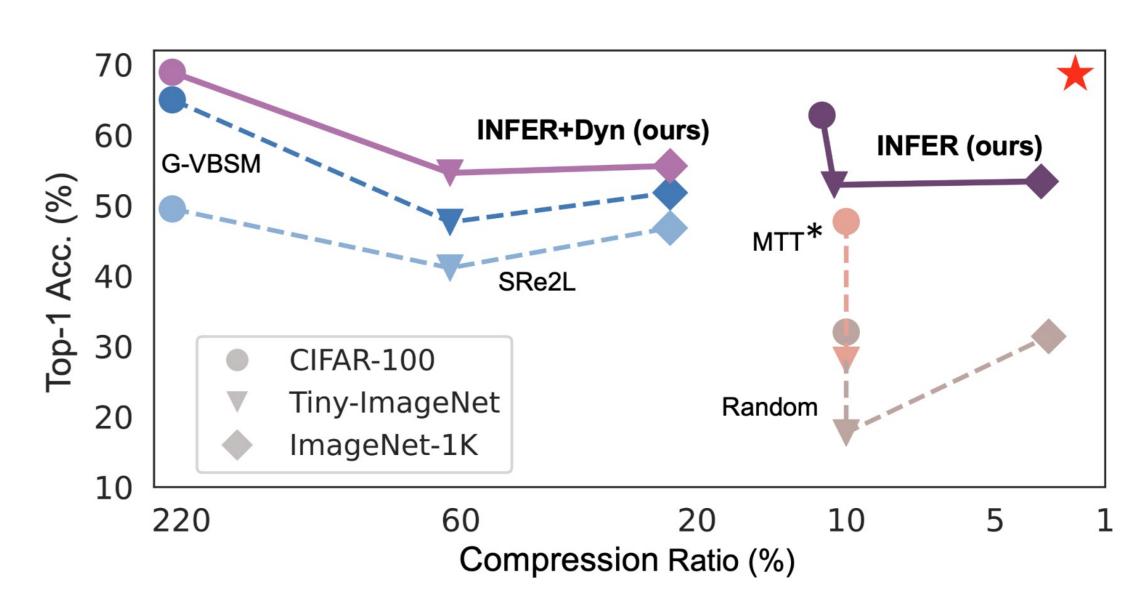
ipc	Compression Ratio 10 50		ResNet18 10 50		ResNet-50 10 50		ResNet-101 10 50	
Random	0.78%	3.90%	$\begin{array}{c c} 10.5 \\ \scriptstyle{\pm 0.4} \end{array}$	$\underset{\pm 0.3}{31.4}$	9.3	$\underset{\pm 0.2}{31.5}$	$\begin{array}{c} 10.0 \\ {\scriptstyle \pm 0.4} \end{array}$	$\underset{\pm 0.1}{33.1}$
SRe2L* (Yin et al., 2024)	0.81%	4.04%	$\begin{array}{c} 9.8 \\ {\scriptstyle \pm 0.1} \end{array}$	$\underset{\pm 0.5}{17.3}$	$\underset{\pm 0.3}{\textbf{8.7}}$	$\underset{\pm 0.4}{17.2}$	$\underset{\pm 0.2}{\textbf{8.8}}$	$\underset{\pm 0.2}{15.8}$
G-VBSM* (Shao et al., 2024)	0.81%	4.04%	$\begin{array}{c} \textbf{11.9} \\ {\scriptstyle \pm 0.2} \end{array}$	$\underset{\pm 0.1}{\textbf{32.9}}$	$\underset{\pm 0.2}{14.5}$	$\underset{\pm 0.2}{38.1}$	$\begin{array}{c} \textbf{13.9} \\ {\scriptstyle \pm 0.1} \end{array}$	$\underset{\pm 0.4}{38.9}$
INFER	0.81%	4.04%	$\begin{array}{c} \textbf{28.7} \\ \scriptstyle{\pm 0.2} \end{array}$	${\displaystyle {\bf 51.8}\atop \scriptstyle{\pm 0.2}}$	$26.9 \atop \pm 0.3$	$53.3 \atop \pm 0.3$	$26.5 \atop \scriptstyle{\pm 0.1}$	$52.2 \atop \pm 0.3$
SRe2L (Yin et al., 2024)	4.53%	22.67%	$egin{array}{c} ar{2}1.3 \ {\scriptstyle\pm}_{0.6} \end{array}$	$\overline{46.8}\atop{\scriptstyle\pm0.2}$	$\overline{28.4}\atop{\scriptstyle{\pm0.1}}$	$\overline{55.6}\atop\scriptstyle{\pm0.3}$	$\overline{\overset{30.9}{\overset{\pm 0.1}{}}}$	$\begin{array}{c} \overline{60.8} \\ {\scriptstyle \pm 0.5} \end{array}$
G-VBSM (Shao et al., 2024)	4.53%	22.67%	$\begin{array}{c} 31.4 \\ {\scriptstyle \pm 0.5} \end{array}$	$\underset{\pm 0.4}{51.8}$	$\underset{\pm 0.8}{35.4}$	$\underset{\pm 0.3}{58.7}$	$\begin{array}{c} \textbf{38.2} \\ {\scriptstyle \pm 0.4} \end{array}$	$\underset{\pm 0.4}{61.0}$
INFER+Dyn	4.53%	22.67%	$\begin{array}{c} \textbf{36.3} \\ \scriptstyle{\pm 0.3} \end{array}$	$55.6 \atop \pm 0.2$	38.3 ±0.5	$63.4 \atop \scriptstyle{\pm 0.3}$	38.9 ±0.5	$\underset{\pm 0.1}{60.7}$

Comparison with SOTAs on ImageNet-1K



The change in feature duplication with the increase of ipc

The ablation study of UFC



Better performance & higher compression ratio

References:

X. Zhang, J. Du, P. Liu, and J. T. Zhou, "Breaking Class Barriers: Efficient Dataset Distillation via Inter-Class Feature Compensator," in Proc. Int. Conf. Learn. Represent. (ICLR), 2025.

Z. Yin, E. Xing, and Z. Shen, "Squeeze, Recover and Relabel: Dataset Condensation at ImageNet Scale From A New Perspective," in Proc. 37th Conf. Neural Information Processing Systems (NeurIPS), 2023.