

Controllable Blur Data Augmentation Using 3D-Aware Motion Estimation

Insoo Kim ^{1,2}, Hana Lee ¹, Hyong-Euk Lee ¹, Jinwoo Shin ²

Insoo1.kim@samsung.com

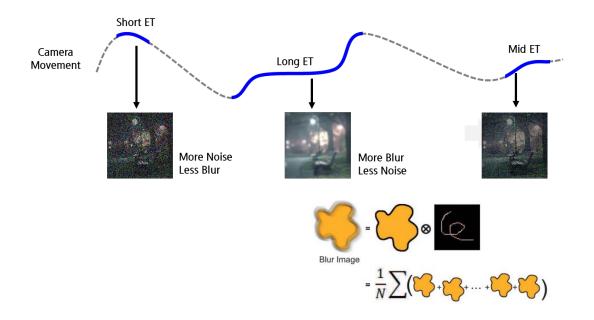
¹Samsung Advanced Institute of Technology (SAIT)

²Korea Advanced Institute of Science and Technology (KAIST)

Introduction: Motion Blur

■ Motion Blur

Mainly caused by the camera shake and object movement in the long exposure time



Blind Image Deblurring Problem

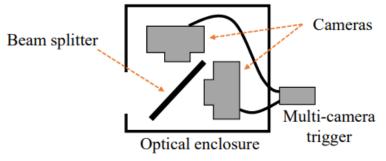
Solve $y = x \otimes k$ with two unknowns, e.g., sharp image x and blur kernel k

▶ Basically, it is an ill-posed problem

Introduction: Blur Datasets

■ The Essence of Large-Scale Blur Datasets for Practical Usage

- 1) Under the low-light conditions, it is challenging to simultaneously capture the same scene for blur and sharp images
- 2) To overcome this, the dual camera system [1] was introduced by using the beam splitter
 - Photometric & geometric alignment (i.e., post-processing) between blur and sharp images is necessary
 - This heavy system restricts from collecting large-scale dataset → insufficient number of scenes & blur patterns



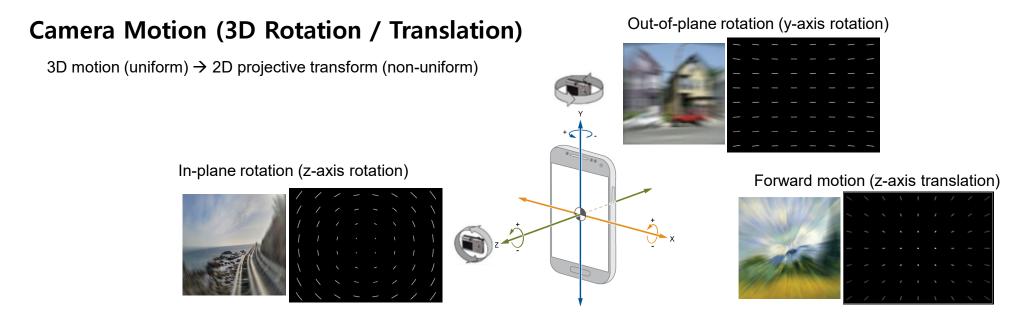
(a) A diagram of our image acquisition system

(b) Our image acquisition system

- 3) Alternatively, we can consider the data augmentation scheme like high-level vision tasks
 - There have been little studies particularly focused on blur data augmentation

Introduction: Blur Modeling

Blur Modeling for Data Augmentation



Motivation: camera and object motion inherently arise in 3D space

For example, in the case of camera motion,

- ► Previous methods 2D non-uniform field → regressing per-pixel kernel (huge ill-posed)
- ► Proposed method 3D uniform motion trajectory → estimating rotation & translation parameters (much easier)

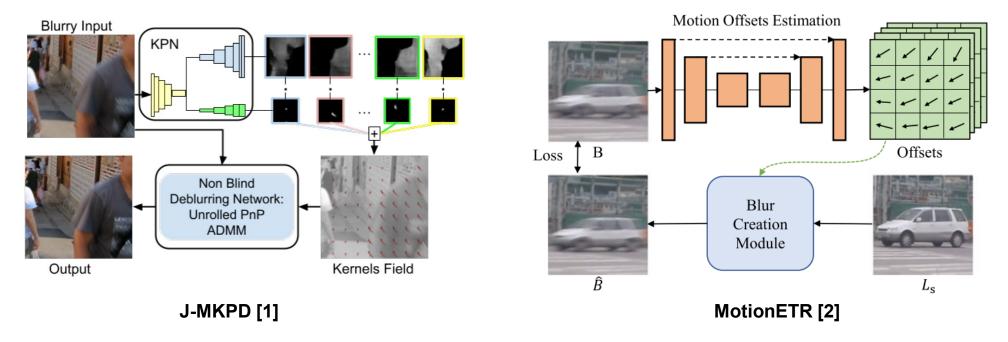
Related Works: Kernel-Based Methods

Kernel-Based Methods

We may utilize byproduct of the kernel-based methods, i.e., blur kernels, to synthesize blur images

- (+) Estimate blur kernels to synthesize blur images (:
- (-) Simply regressing the simulated kernels may not hold in generating realistic blur images

(-) The kernel-based methods are designed to estimate motions from a 2D perspective (:)



^[1] Carbajal et al., "Blind motion deblurring with pixel-wise kernel estimation via kernel prediction networks" (IEEE Trans. on Computational Imaging 2023) [2] Zhang et al., "Exposure trajectory recovery from motion blur" (TPAMI 2021)

Related Works: Diffusion-Based Blur Synthesis

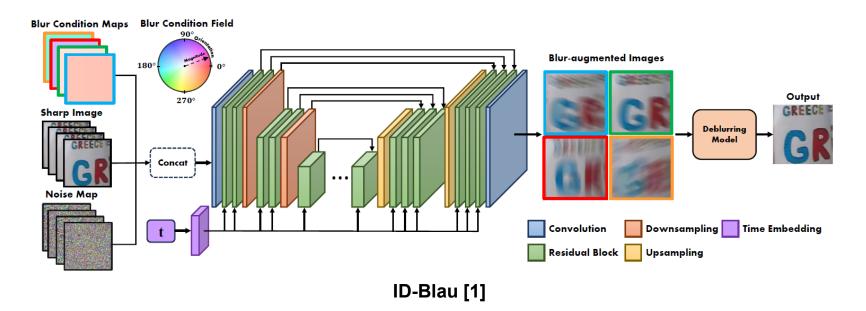
Diffusion-Based Blur Data Augmentation

(+) Introducing controllable blur synthesizer, allowing for generating a wide range of unseen blur scenarios (

(-) Diffusion-based method is computationally expensive, and challenging to use for real-time blur data augmenta 🔀

(-) This scheme requires video frame images which are not typically provided in blur datasets (

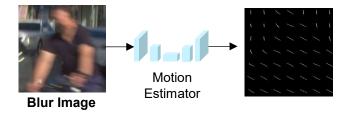
(-) 3D aspects of blur modeling are not considered



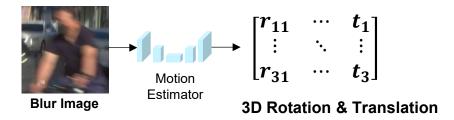
Proposed Method: Main Idea & Key Challenges

Main Idea

Estimating complex 2D per-pixel blur kernels



Estimating simple 3D camera positions



Key Challenges

■ Challenge I : motion estimation in 3D space

We only have 2D blur images and no 3D information → How do we estimate 3D motion using blur images only?

■ Challenge II: controllability

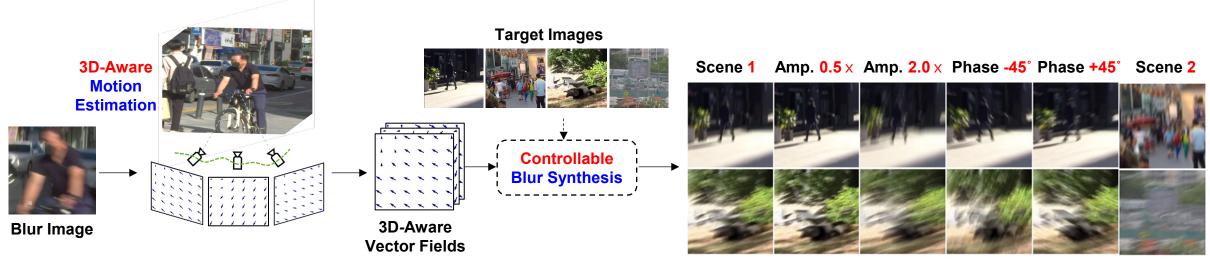
Controllability is essential for data augmentation → How to effectively control motions?

Proposed Method: Overview

■ Controllable 3D-Aware Blur Synthesizer

To effectively estimate 3D motion, we decompose 3D motion into 2D motion and 3D residual components

- 1) Challenge I: motion estimation in 3D space
 - ▶ Solve this by estimating 3D residual components via neural networks
 - ► This allows for estimating 3D motion without requiring explicit depth measurements
- 2) Challenge II: controllability
 - ► Solve this by representing a motion as a vector field → vector amplitude (blur amount) and phase (blur direction)
 - ▶ Allowing for generation of millions of diverse blur patterns by randomly varying blur amount and directions

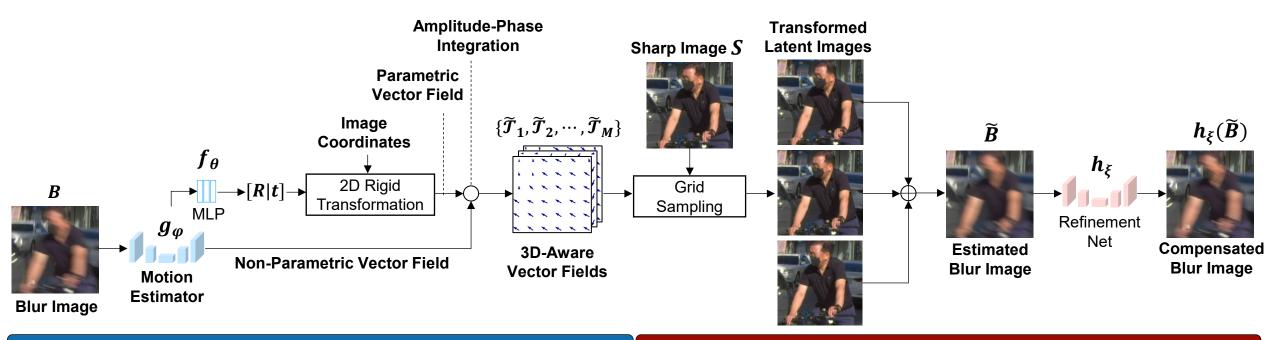


Proposed Method: Overview

Overview of Proposed Method

Our blur synthesizer consists of two main components

- 1) 3D-Aware Motion Estimation 2D parametric vector field + 3D non-parametric vector field
- 2) Blur Image Synthesis Corresponding scene image generation and blur image synthesis by aggregating them

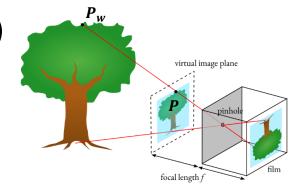


Proposed Method: 3D-Aware Blur Model

■ 3D-Aware Motion Estimation (Camera Motion)

2D rigid transformation parameters

$$\mathcal{T}_{\tau}(u) = \begin{bmatrix} R_{\tau} | t_{\tau} \end{bmatrix} \mathbf{u} = \begin{bmatrix} r_{11} & r_{12} & t_{1} \\ r_{21} & r_{22} & t_{2} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} r_{11}x + r_{12}y + t_{1} \\ r_{21}x + r_{22}y + t_{2} \end{bmatrix}$$



World coordinate: X

Image coordinate : u

Camera intrinsics: K

Projection: π

3D rigid transformation = 2D transformation + 3D geometry residual components

$$\mathcal{T}_{\tau}(X) = [R_{\tau}|t_{\tau}]X = \begin{bmatrix} r_{11} & \cdots & t_{1} \\ \vdots & \ddots & \vdots \\ r_{31} & \cdots & t_{3} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} r_{11}x + r_{12}y + r_{13}z + t_{1} \\ r_{21}x + r_{22}y + r_{23}z + t_{2} \\ r_{31}x + r_{32}y + r_{33}z + t_{3} \end{bmatrix} = \begin{bmatrix} r_{11}x + r_{12}y + t_{1} \\ r_{21}x + r_{22}y + t_{2} \\ 0 \end{bmatrix} + \begin{bmatrix} r_{13}z \\ r_{23}z \\ r_{31}x + r_{32}y + r_{33}z + t_{3} \end{bmatrix}$$

$$2D \text{ transformation}$$

$$2D \text{ transformation}$$

$$3D \text{ residual component}$$

$$T_{\tau}^{*}(u)$$

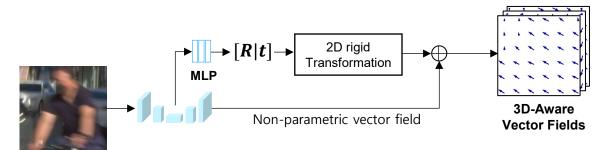
Since the 3D-aware coordinate vector lies in \mathbb{R}^2 , we can simply express it as

$$\widetilde{\mathcal{T}_{ au}}(u) = \pi(\mathcal{T}_{ au}^*(u) + \epsilon_{ au}(X); K) pprox \mathcal{T}_{ au}(u) \circ (\epsilon_{ au}(u))$$

Neural Network

3D-aware vector field : $\widetilde{\mathcal{T}_{\tau}} = \mathcal{T}_{\tau} \circ \epsilon_{\tau}$

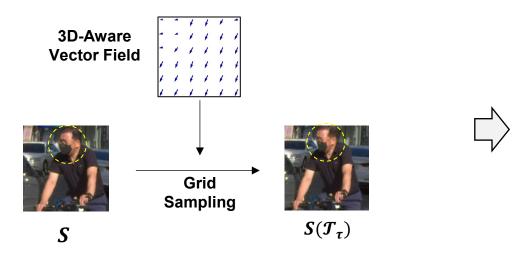
Parametric Non-parametric vector field vector field



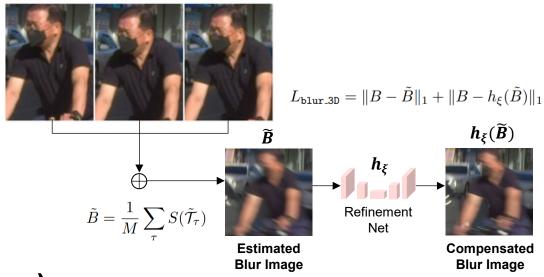
Proposed Method: 3D-Aware Blur Model

Blur Image Synthesis (Camera Motion)

Generating the corresponding scene images



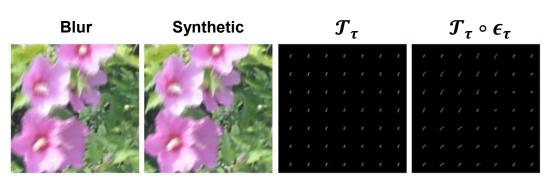
Aggregate the scene images to synthesize a blur image



3D-Aware Motion Estimation (Object Motion)

3D-aware vector field : $\widetilde{\mathcal{T}_{\tau}} = \mathcal{T}_{\tau} \circ \epsilon_{\tau}$ Parametric vector field | Non-parametric vector field | vector field |

▶ Non-parametric vector field was initially designed for representing



Proposed Method: Ambiguity Regularization

Ambiguity Regularization

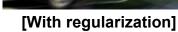
The vector field modification introduces ambiguities, resulting in implausible results and artifacts. These ambiguities lead to unconstrained optimization problems which makes blur synthesis uncontrollable.

3D-aware vector field modification : $\widetilde{\mathcal{T}_{\tau}} = \mathcal{T}_{\tau} \circ \epsilon_{\tau} = \underline{U} + (\Delta \mathcal{T}_{\tau} \circ \epsilon_{\tau}) = U + (\delta_{\tau})$

Canonical Coordinates Displacement Field

The motion vector field is not irregularly changed in the spatial space

$$L_{\text{smooth}} = \sum_{\tau} \sum_{x,y} \left(4\tilde{\mathcal{T}}_{\tau}(x,y) - \sum_{i,j} \tilde{\mathcal{T}}_{\tau}(x+i,y) + \tilde{\mathcal{T}}_{\tau}(x,y+j) \right)^{2}, \qquad i,j \in \{-1,1\}$$

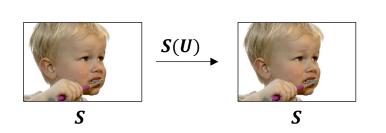


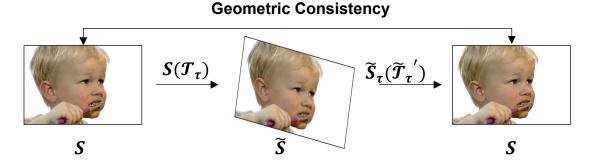
 $\{1\}$ [Without regularization]

Geometric Regularization

The 3D transformed sharp image should be geometrically reverted to the original sharp image

$$L_{\mathrm{geometric}} = \frac{1}{M} \sum_{\mathbf{r}} \|S - \tilde{S_{\tau}}(\tilde{\mathcal{T}}_{\tau}')\|_1$$
 , where $\widetilde{\boldsymbol{T}}_{\tau}^{\ \prime} = \boldsymbol{U} - \boldsymbol{\delta}_{\tau}$ is the inverse vector field





Proposed Method: Controllable Blur Data Augmentation

■ Controllable Blur Data Augmentation

Recall the 3D-aware vector field: $\mathcal{T}_{\tau} = U + \delta_{\tau}$

Adjust blur magnitude and direction parameters for blur control

$$\delta = |\delta| \angle \phi(\delta) \longrightarrow \widetilde{\delta}_{\tau} = (|\delta_{\tau}| \times \alpha) \angle (\phi(\delta_{\tau}) + \beta)$$

Finally, we obtain the modified vector field, i.e.,

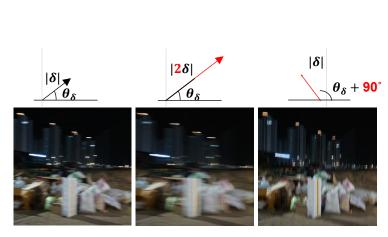
$$\widetilde{\boldsymbol{\mathcal{T}}}_{\tau} = \boldsymbol{U} + \widetilde{\boldsymbol{\delta}}_{\tau}$$

▶ By randomly varying blur magnitude and directions,

3D-Aware
Vector Fields

Controllable
Blur Synthesis

Target Image



Synthesized Blur Images

we can produce a wide range of unseen blur images during the deblurring training

[3D Motion Blur Results]

In-plane rotation blur (z-axis rotation)

Forward motion blur (z-axis translation)

[Blur Image]

[Synthetic Blur Image]

[Blur Trajectory]

[Blur Image]

[Synthetic Blur Image]

[Blur Trajectory]

Experimental Results

■ Experimental Results

1) Evaluation Results for Different Datasets and Network Architectures

► RealBlur : Camera Motion Only

► GoPro : Camera Motion + Object Motion

► HIDE: Unseen Motion (Generalization Ability)

Model	GoPro		HIDE		RealBlur-J		RealBlur-R	
	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
MIMO-UNet+	32.44	0.957	30.00	0.930	31.92	0.919	39.10	0.969
+ GeoSyn (ours)	33.01	0.962	30.86	0.940	32.55	0.925	39.68	0.972
Restormer	32.92	0.961	31.22	0.942	32.32	0.924	39.47	0.972
+ GeoSyn (ours)	33.37	0.964	31.61	0.946	33.05	0.937	40.31	0.974
NAFNet	33.69	0.966	31.32	0.943	32.50	0.928	39.89	0.973
+ GeoSyn (ours)	34.09	0.969	31.64	0.947	32.99	0.936	40.49	0.976
FFTformer	34.21	0.969	31.62	0.946	32.62	0.933	40.11	0.973
+ GeoSyn (ours)	34.39	0.970	31.98	0.949	33.68	0.938	40.89	0.977

Experimental Results

■ Experimental Results

2) Other dataset (RSBlur)

Methods	GMACs	RSBlur		
Methods	UNIACS	PSNR ↑	SSIM↑	
SRN-Deblur	1434.82	32.53	0.840	
MIMO-UNet+	154.41	33.37	0.856	
MPRNet	777.01	33.61	0.861	
Restormer	141.00	33.69	0.863	
Uformer-B	89.50	33.98	0.866	
NAFNet-64	63.64	33.97	0.866	
+ GeoAug (ours)	63.64	34.23	0.870	

4) Comparison with other augmentation methods

Augmentation Types	Datasets	PSNR ↑ SSIM ↑
None		33.69 0.966
Adaptive Basis	GoPro	33.59 0.965
Exposure Trajectory	Gorio	33.92 0.968
GeoSyn (ours)		34.08 0.969
None		32.35 0.925
Blur Pipeline	RealBlur-J	32.57 0.931
ID-Blau	Keaibiui-J	32.70 0.932
GeoSyn (ours)		32.97 0.936

3) 2D modeling vs 3D modeling

P – Parametric vector field NP – Non-parametric vector field

Methods	P	NP	PSNR ↑ SSIM ↑
None			32.35 0.925
2D parametric	✓		32.65 0.932
3D non-parametric		✓	32.61 0.930
3D flat depth	✓		32.66 0.932
3D monocular depth	✓		32.45 0.929
GeoSyn (ours)	✓	✓	32.97 0.936

5) Efficient deblurring models

Methods	GMACs	PSNR ↑	SSIM ↑
NAFNet-16	4.0	31.58	0.912
+ GeoSyn (ours)	4.0	31.97	0.921
NAFNet-32	16.0	31.99	0.920
+ GeoSyn (ours)	10.0	32.59	0.931
NAFNet-64	63.5	32.50	0.928
+ GeoSyn (ours)	05.5	32.99	0.936

Experimental Results

Qualitative Results on Real-World Blur Images

