Optimal Learning of Kernel Logistic Regression for Complex Classification Scenarios

Hongwei Wen, Annika Betken, Hanyuan Hang

University of Twente

Problem Setting

- Standard Classification Scenario: we observe i.i.d. data $D := (X_i, Y_i)_{i=1}^n$ drawn from an unknown distribution P, where X_i denotes the input and Y_i represents the output. The goal is to predict the output Y for the input X.
- Complex Classification Scenarios: labeled samples $D_p := (X_i, Y_i)_{i=1}^{n_p}$ drawn from a distribution P, while inference is required for a different distribution Q on the same space.
- Label shift assumption: Two distributions P and Q share the same conditional probability but has different class probabilities, i.e.,

$$p(x|y) = q(x|y)$$
 but $p(y) \neq q(y)$.

• Goals: To estimate the class conditional probability (CCP) estimator

$$q(y|x) = \frac{w_y^* p(y|x)}{\sum_{k=1}^K w_k^* p(k|x)},$$

where the class probability ratio $w^* \coloneqq (w_y^*)_{y \in [K]}$ between q(y) and p(y) is given by

$$w_y^* := q(y)/p(y), y \in [K].$$

We then induce the plug-in classifier defined as $argmax_{k \in [K]} \hat{q}(y|x)$.

Specific Tasks

- Long-tailed Learning: the target label probability q(y) is known to be uniform, specifically q(k) = 1/K for any $k \in [K]$. In contrast, the label probability p(y) may significantly deviate from a uniform distribution.
- **Domain Adaptation: Label Shift:** the label distribution q(y) is unknown. In addition to labeled samples D_p from the source distribution P, unlabeled samples $D_q^u := (X_i)_{i=n_p+1}^{n_p+n_q}$ are drawn from the marginal probability density q(x) of the target distribution Q.
- Transfer Learning: Label Bias: the label distribution q(y) is uniform. We assume that only the pre-trained model $\hat{p}(y|x)$ on D_p is available, while labeled pre-trained data D_p itself is not accessible. Additionally, we can observe a small number of auxiliary samples $D_s \coloneqq (X_i^s, Y_i^s)_{i=1}^{n_s}$, drawn from an unknown data distribution S, which is assumed to satisfy s(x|y) = p(x|y).

Methodology based on CCP estimation

CCP-based method:

Step 1. estimate the class probability ratio \widehat{w} .

Step 2. calculate the CCP predictor of q(y|x) by

$$\widehat{q}(y|x) = \frac{\widehat{p}(y|x)\,\widehat{w}_y}{\sum_{k=1}^K \widehat{p}(k|x)\,\widehat{w}_k}, \qquad y \in [K]. \tag{2}$$

Long-tailed Learning:

The probability
$$p(y)$$
 can be easily estimated by
$$\hat{p}(y) := \frac{1}{n_p} \sum_{i=1}^{n_p} 1\{Y_i = y\}, \quad y \in [K]. \quad (3)$$

Consequently, the class probability ratio w^* can be estimated as

$$\widehat{w}_y \coloneqq \widehat{q}(y) / \widehat{p}(y) = 1 / (K \, \widehat{p}(y)).$$

Methodology based on CCP estimation

Domain Adaptation: Label Shift:

Wen et.al (2024) estimate the class probability ratio w^* by matching $\hat{p}(y)$ and the weighted conditional probability $\hat{p}(y|x)$

$$\hat{p}_q^w(y) := \frac{1}{n_q} \sum_{i=1}^{n_q} \frac{\hat{p}(y|X_i)}{\sum_{y=1}^K w_y \, \hat{p}(y|X_i)}.$$

Then we find the solution to the following minimization problem,

$$\widehat{w} := \operatorname{argmin}_{w \in R^K} \sum_{y=1}^K |\widehat{p}(y) - \widehat{p}_q^w(y)|^2. \tag{4}$$

Transfer Learning: Label Bias

Zhu et.al. (2024) proposes the estimator $\hat{p}(y)$ as the stationary distribution of a Markov chain characterized by the transition matrix $\hat{C} = (\hat{C}_{kj})_{k,j \in [K]}$, with entries given by

$$\hat{C}_{kj} := \frac{1}{n_{s,j}} \sum_{i=1}^{n_{s,j}} 1\{Y_i = y\} \ \hat{p}(k|X_i^s), \tag{5}$$

where $n_{s,j}$ denotes the sample size of the j-th class in D_s . Given that q(k) = 1/K, the weight w_y^* can be estimated as $\widehat{w}_y \coloneqq 1/(K\widehat{p}(y))$.

Main Theoretical Results

Assumption 1 We impose the following assumptions on the distribution P.

- (i) Holder Smoothness: Assume that for any x, x', there exist a Holder constant $c_{\alpha} \geq 0$ and an $\alpha \in [0,1]$ such that $|p(k|x') p(k|x) \leq c_{\alpha} ||x' x||^{\alpha}$ for all $k \in [K]$.
- (ii) Small Value Bound: Assume that for all $t \in [0,1]$, there exist constants $\beta \ge 0$ and $c_{\beta} \ge 0$ such that $P_X(p(k|x) \le t) \le c_{\beta} t^{\beta}$ for all $k \in [K]$.

Generalization Bounds

Theorem 2 (Generalization Bound).

Let Assumptions 1 holds. Moreover, let $\hat{q}(y|x)$ be the CCP-based estimator in Eq. (2). Then, let $\mathcal{R}_Q(\hat{q}(y|x))$ and \mathcal{R}_Q^* be the cross-entropy risk of $\hat{q}(y|x)$ and the possibly minimal CE risk, respectively.

• Then for *long-tailed learning*, with probability at least $1-2/n_p$, for any $\xi>0$, there holds $\mathcal{R}_Q\big(\hat{q}(y|x)\big)-\mathcal{R}_Q^*\leqslant n_p^{\frac{(1+\beta\wedge1)\alpha}{(1+\beta\wedge1)\alpha+d}+\xi}$

$$\mathcal{R}_{\mathbf{Q}}(\hat{\mathbf{q}}(\mathbf{y}|\mathbf{x})) - \mathcal{R}_{\mathbf{Q}}^* \leqslant \mathbf{n}_{\mathbf{p}}^{\frac{(1+\beta\lambda 1)\alpha}{(1+\beta\lambda 1)\alpha+\mathbf{d}} + \xi}$$

• For label shift domain adaptation, with probability at least $1-2/n_p-2/n_q$, for any $\xi > 1$ 0, there holds

$$\mathcal{R}_{\mathbf{Q}}(\hat{\mathbf{q}}(\mathbf{y}|\mathbf{x})) - \mathcal{R}_{\mathbf{Q}}^* \leqslant n_{\mathbf{p}}^{-\frac{(1+\beta\wedge1)\alpha}{(1+\beta\wedge1)\alpha+d}+\xi} + \log n_{\mathbf{q}}/n_{\mathbf{q}}.$$

• For label bias transfer learning, with probability at least $1-2/n_p-2/n_q$, for any $\xi>0$, there holds

$$\mathcal{R}_{Q}(\hat{q}(y|x)) - \mathcal{R}_{Q}^{*} \leq n_{p}^{-\frac{(1+\beta\wedge1)\alpha}{(1+\beta\wedge1)\alpha+d}+\xi} + \log n_{s}/n_{s}.$$

Empirical Verification

Dataset	Method	Long-tailed Learning	Domain Adaptation	Transfer Learning
Dionis	Baseline CCP	80.71 ± 0.87 83.67 ± 1.10	77.69 ± 1.58 82.73 ± 1.40	80.72 ± 0.88 84.22 \pm 0.99
Gas Sensor	Baseline	85.57 ± 5.97	96.14 ± 0.89	85.97 ± 5.57
	CCP	90.49 ± 4.47	96.52 ± 1.30	90.27 ± 4.78
Satimage	Baseline	80.51 ± 3.70	89.80 ± 3.90	80.51 ± 3.70
	CCP	84.56 ± 1.32	96.46 ± 2.42	84.47 ± 1.98

For each dataset and each method, we denote the best performance with **bold**.

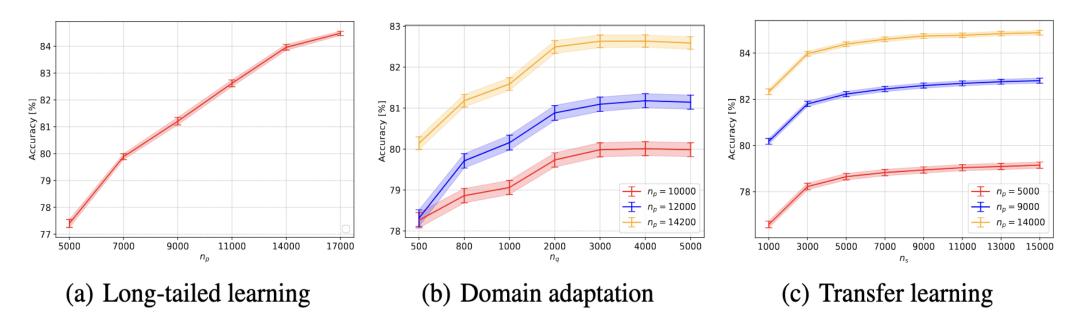


Figure 1: The impact of sample sizes on accuracy in complex classification scenarios.