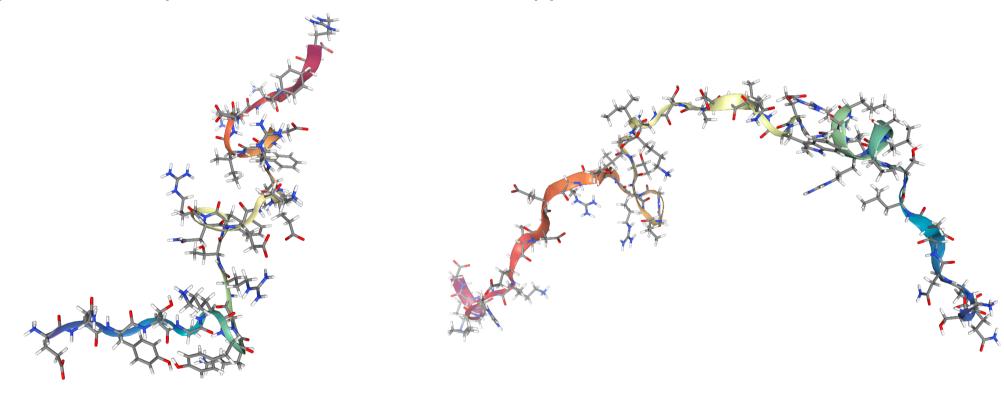
Transition Path Sampling with improved Off-policy training of Diffusion Path Samplers

Kiyoung Seong, Seonghyun Park, Seonghwan Kim Wooyoun Kim, Sungsoo Ahn

Goal

• Our goal is to sample rare transitions without trapped in meta-stable states.



Fast folding proteins (ours)

Molecular dynamics

Molecular dynamics (MD) describes the motion of molecules as the following SDE:

Newton Dynamics friction diffusion
$$dR_t = V_t dt, \qquad dV_t = \frac{-\nabla U(R_t)}{m} dt - \gamma V_t dt + \sqrt{\frac{2\gamma k_B \lambda}{m}} dW_t$$

Langevin dynamics

$\mathbf{R}_t \in \mathbb{R}^{3N}$	atom-wise positions
$\boldsymbol{V}_t \in \mathbb{R}^{3N}$	atom-wise velocities
$U: \mathbb{R}^{3N} \to \mathbb{R}$	potential energy
m	atom-wise mass
γ	friction coefficient
k_B	Boltzmann constant
λ	Temperature
d w	Brownian motion.

Molecular dynamics

Molecular dynamics (MD) describes the motion of molecules as the following SDE:

$$d\mathbf{R}_t = \mathbf{V}_t dt, \qquad d\mathbf{V}_t = \frac{-\nabla U(\mathbf{R}_t)}{m} dt - \gamma \mathbf{V}_t dt + \sqrt{\frac{2\gamma k_B \lambda}{m}} d\mathbf{W}_t$$

Langevin dynamics

$$\mathrm{d}\boldsymbol{X}_t = \boldsymbol{u}(\boldsymbol{X}_t)\mathrm{d}t + \Sigma\mathrm{d}\boldsymbol{W}_t$$

$\mathbf{R}_t \in \mathbb{R}^{3N}$	atom-wise positions
$V_t \in \mathbb{R}^{3N}$	atom-wise velocities
$J: \mathbb{R}^{3N} \to \mathbb{R}$	potential energy
n	atom-wise mass
/	friction coefficient
\mathcal{K}_B	Boltzmann constant
ી	Temperature
dw	Brownian motion.

Amortized transition path sampling

• Transition path $\{X_t\}_{0 \le t \le T}$ is a sample from endpoint conditioned Langevin dynamics

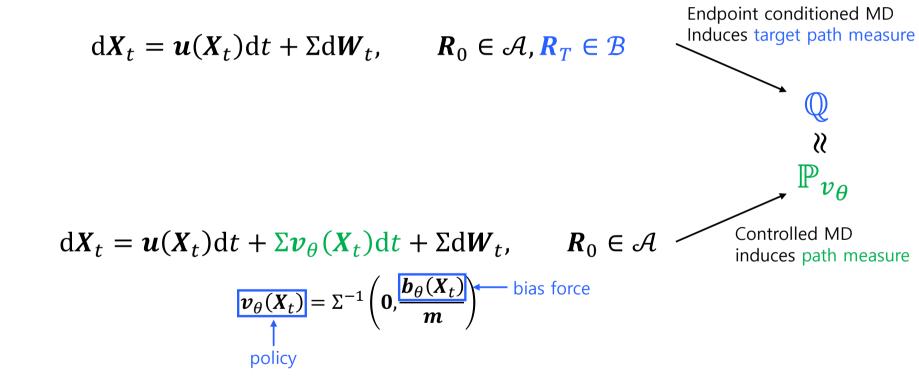
$$dX_t = u(X_t)dt + \Sigma dW_t, \qquad R_0 \in \mathcal{A}, R_T \in \mathcal{B}$$

To amortize inference with endpoint condition, we consider controlled dynamics

$$\mathrm{d}X_t = \boldsymbol{u}(X_t)\mathrm{d}t + \boldsymbol{\Sigma}\boldsymbol{v}_{\theta}(X_t)\mathrm{d}t + \boldsymbol{\Sigma}\mathrm{d}\boldsymbol{W}_t, \qquad \boldsymbol{R}_0 \in \mathcal{A}$$

$$\boldsymbol{v}_{\theta}(X_t) = \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{0}, \frac{\boldsymbol{b}_{\theta}(X_t)}{\boldsymbol{m}}\right) \qquad \text{bias force}$$
 policy

Amortized transition path sampling



Key ideas

(1) How to design objective function?

₩

 \mathbb{P}_{n}

(2) How to parameterize bias force?

 $\boldsymbol{b}_{\theta}(\boldsymbol{X}_t)$

Key ideas

(1) How to design objective function?

→ log variance divergence for off-policy training

$$\mathbb{V}_{\mathbb{P}}\left[\log\frac{\mathrm{d}\mathbb{P}_{v_{\theta}}}{\mathrm{d}\mathbb{Q}}\right]$$

Reference path measure

Off policy training $(\mathbb{P} \neq \mathbb{P}_{v_{\theta}})$ allows

- 1) generating paths at high temperature
- 2) reusing generated paths with replay buffer

Key ideas

(1) How to design objective function?

 \rightarrow log variance divergence for off-policy training

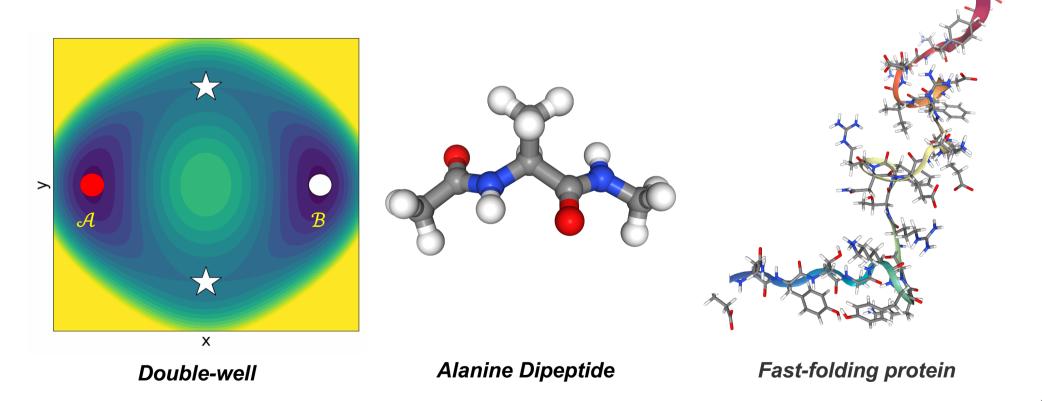
 $\boldsymbol{b}_{\theta}(\boldsymbol{X}_t)$

(2) How to parameterize bias force?

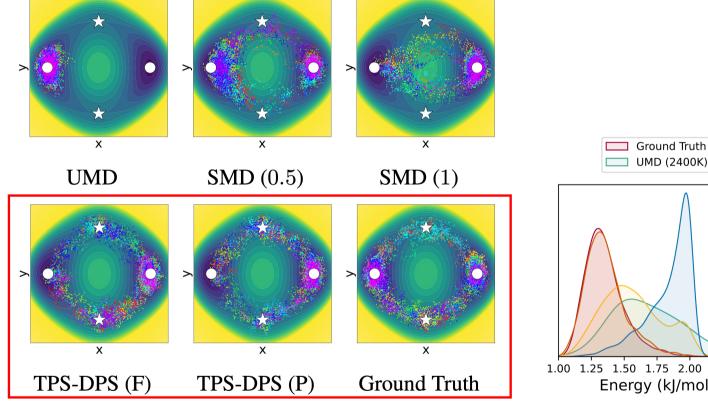
- \rightarrow force $\boldsymbol{b}_{\theta}(\boldsymbol{X}_{t}) \in \mathbb{R}^{3N}$ or potential $b_{\theta}(\boldsymbol{X}_{t}) \in \mathbb{R}$ for small systems
- \rightarrow positive scaling $b_{\theta}(X_t) = s_{\theta}(X_t) * (R_{\mathcal{B}} R_t)$ for large systems

Results

• Our method, named TPS-DPS, samples more realistic and diverse transition paths than baselines on double-well, Alanine Dipeptide, and fast-folding proteins.



Results - double well



Ground Truth SMD (0.5) TPS-DPS (P)

UMD (2400K) SMD (1)

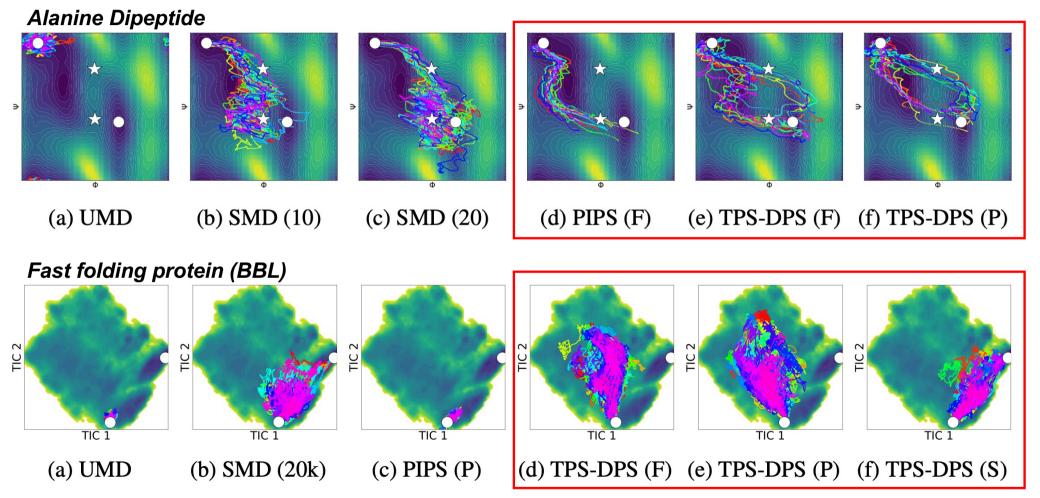
1.00 1.25 1.50 1.75 2.00 2.25 2.50 -2 -1 0 1 2

Energy (kJ/mol) y

Sampled paths

Distributions of transition state

Results – real molecules



Links

• Paper: https://arxiv.org/abs/2405.19961v5

Project page: https://kiyoung98.github.io/tps-dps/

• Code: https://github.com/kiyoung98/tps-dps