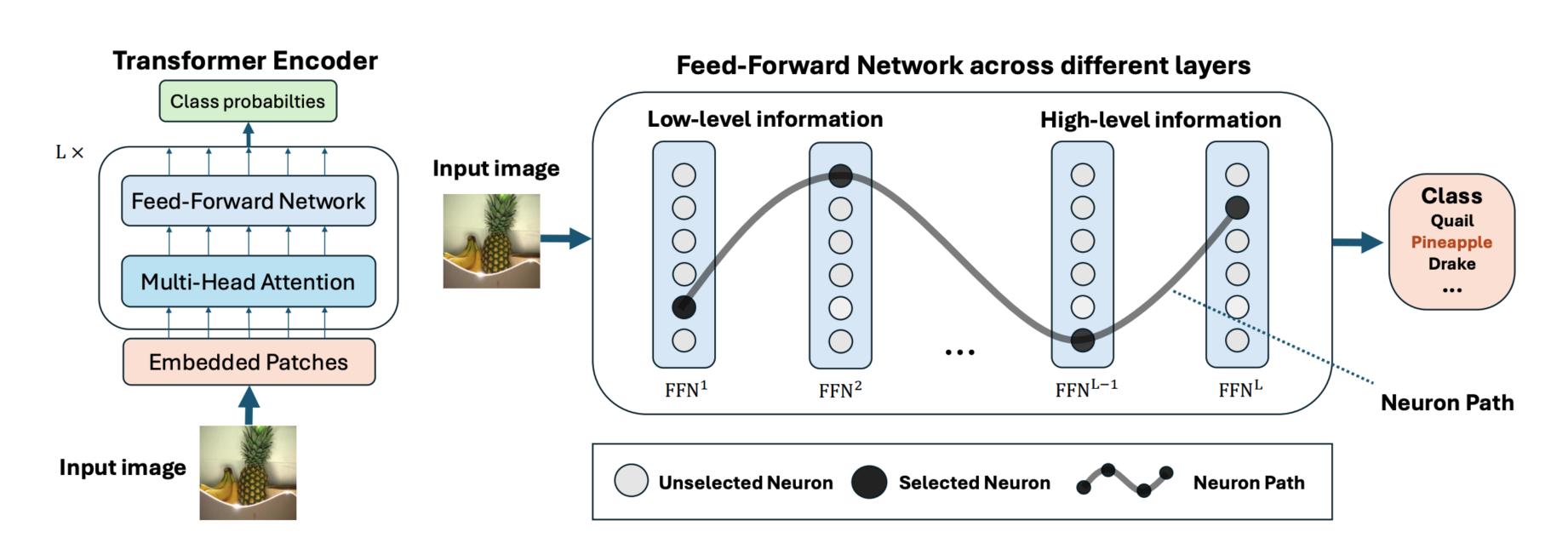
Discovering Influential Neuron Path in Vision Transformers

Yifan Wang, Yifei Liu, Yingdiong Shi, Changming Li, Anqi Pang, Sibei Yang, Jingyi Yu, Kan Ren {wangyf7, renkan}@shanghaitech.edu.cn

Question: How is the vision Transformer model processing the input information by layer, and which part of the model is significant to derive the final outcome?

A New Lens: The Neuron Path



Definition 1 (Joint Attribution Score) Given a model $F: \mathbb{R}^d \to \mathbb{R}$ containing L layers, whose output with input x is defined as F_x , with a set of neuron $\{w_{i_1}^1, w_{i_2}^2, ..., w_{i_N}^N\}$, $N \leq L$, a Joint Attribution Score is defined as

$$JAS(w_{i_1}^1, w_{i_2}^2, ..., w_{i_N}^N) = \sum_{n=1}^N \overline{w}_{i_n}^n \int_{\alpha=0}^1 \sum_{l=1}^N \frac{\partial F_x(\alpha \overline{w}_{i_1}^1, \alpha \overline{w}_{i_2}^2, ..., \alpha \overline{w}_{i_N}^N)}{\partial w_{i_l}^l} d\alpha . \tag{2}$$

For the convenience of computation, we use the Riemann approximation to estimate the continuous integral as follows,

$$\widetilde{\text{JAS}}(w_{i_1}^1, w_{i_2}^2, ..., w_{i_N}^N) = \frac{1}{m} \sum_{i=1}^N \overline{w}_{i_j}^j \sum_{k=1}^m \sum_{l=1}^N \frac{\partial F_x(\frac{k}{m} \overline{w}_{i_1}^1, \frac{k}{m} \overline{w}_{i_2}^2, ..., \frac{k}{m} \overline{w}_{i_N}^N)}{\partial w_{i_l}^l}, \qquad (3)$$

where m is the sampling step.

Definition 2 (Neuron Path) Given a model $F: \mathbb{R}^d \to \mathbb{R}$ containing L layers, with an input x, and a user-defined criterion $S(\cdot)$, a neuron path \mathcal{P}_x is defined as follow.

$$\mathcal{P}_x = \{w^1, w^2, ..., w^L\} \tag{4}$$

that maximizes the $S(\mathcal{P}_x)$, where $w^l, l \in \{1, 2, ..., L\}$ stands for the selected neuron within layer l.

Algorithm 1 Layer-progressive Neuron Locating Algorithm

Input: Model F with L layers, input sample x

Output: neuron path \mathcal{P} Initialization: $\mathcal{P} = \emptyset, l = 1$

while $l \leq L$ do

 \mathcal{W} is the set of neurons in layer l of F; Score =0, p= None for $w \in \mathcal{W}$ do_

if Score < JAS (\mathcal{P}, w) then

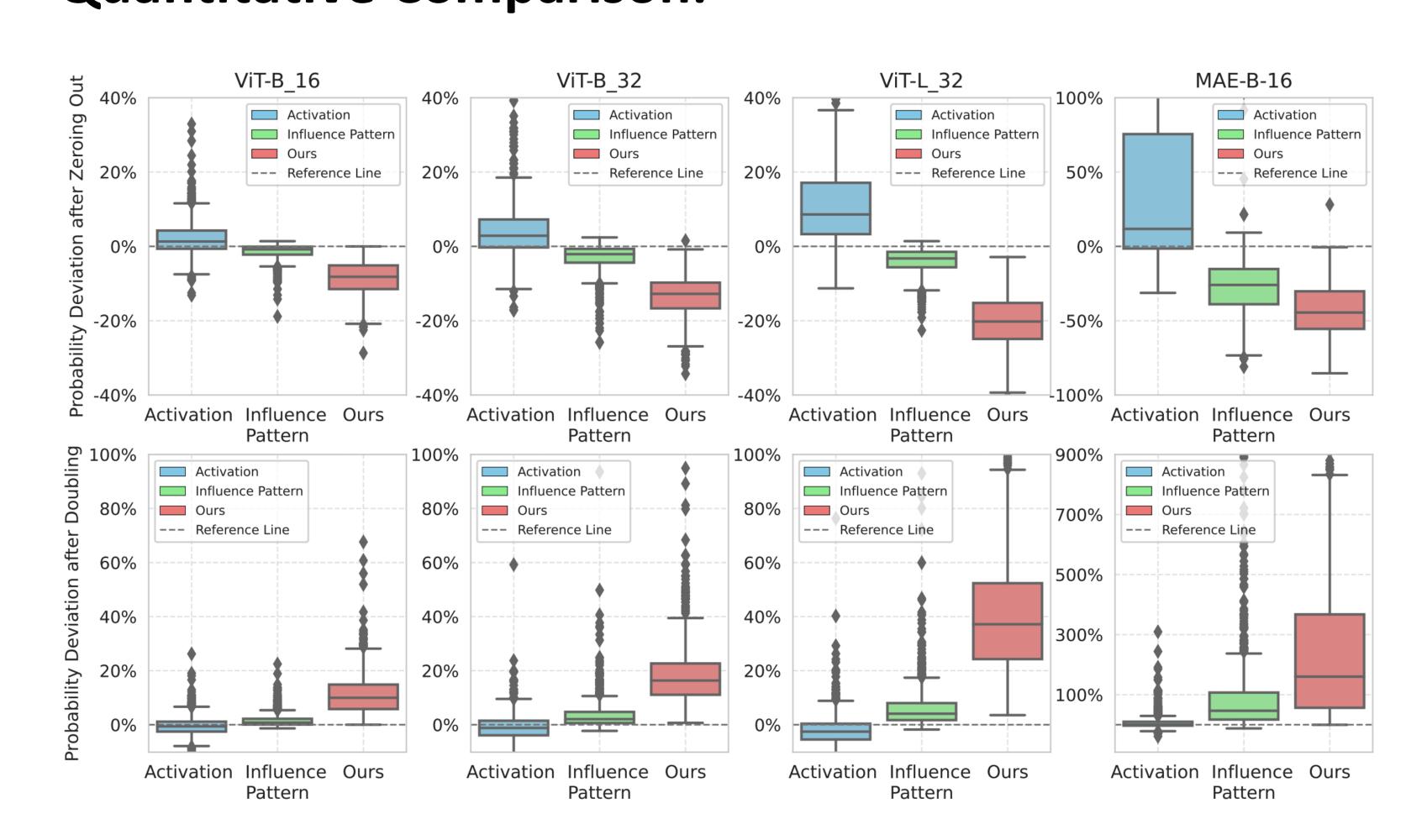
Score =
$$\widetilde{JAS}(\mathcal{P}, w)$$
; $p = w$
 $\mathcal{P} = \mathcal{P} \cup \{p\}$; $l = l + 1$

Quantitative Comparison:

Metrics	Methods	Target Models			
		ViT-B-16	ViT-B-32	ViT-L-32	MAE-B-16
Joint Attribution Score ↑	Activation	-0.0034	0.0288	-0.0065	0.0013
	Influence Pattern	0.0412	0.0841	0.1227	0.0030
	Neuron Path (ours)	0.4078	0.6610	1.0086	0.0095
Removal Accuracy Deviation \$\d\	Activation	0.07%	-0.15%	0.16%	-2.80%
	Influence Pattern	-0.50%	-1.24%	-1.41%	-15.67%
	Neuron Path (ours)	-2.40%	-3.81%	-5.28%	-26.50%
Enhancement Accuracy Deviation ↑	Activation	-0.33%	-0.45%	-0.86%	-1.00%
	Influence Pattern	0.46%	0.83%	1.12%	4.15%
	Neuron Path (ours)	2.04%	3.06%	5.02%	7.28%

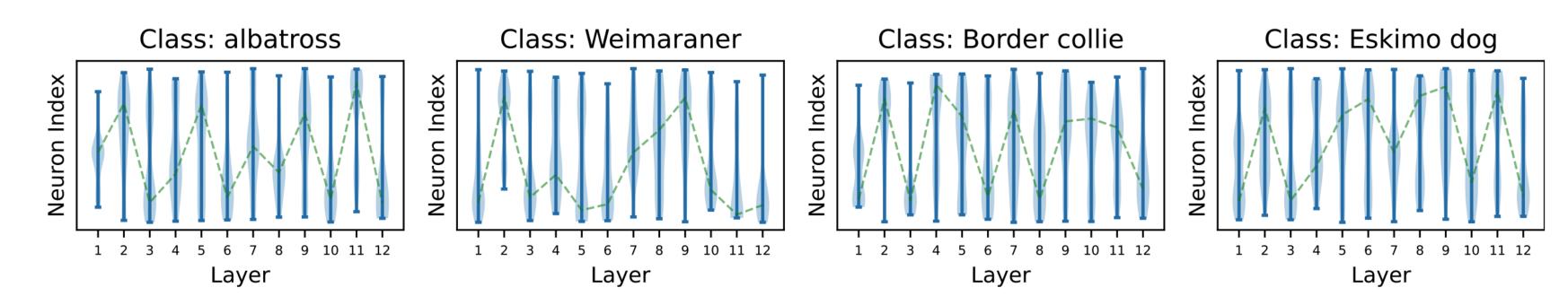
Finding 1: The Neuron Path method more effectively identifies the influential neurons within the model.

Quantitative Comparison:



Finding 2: The discovered neuron paths play a vital role in model inference.

Intra-class analysis on neuron path:

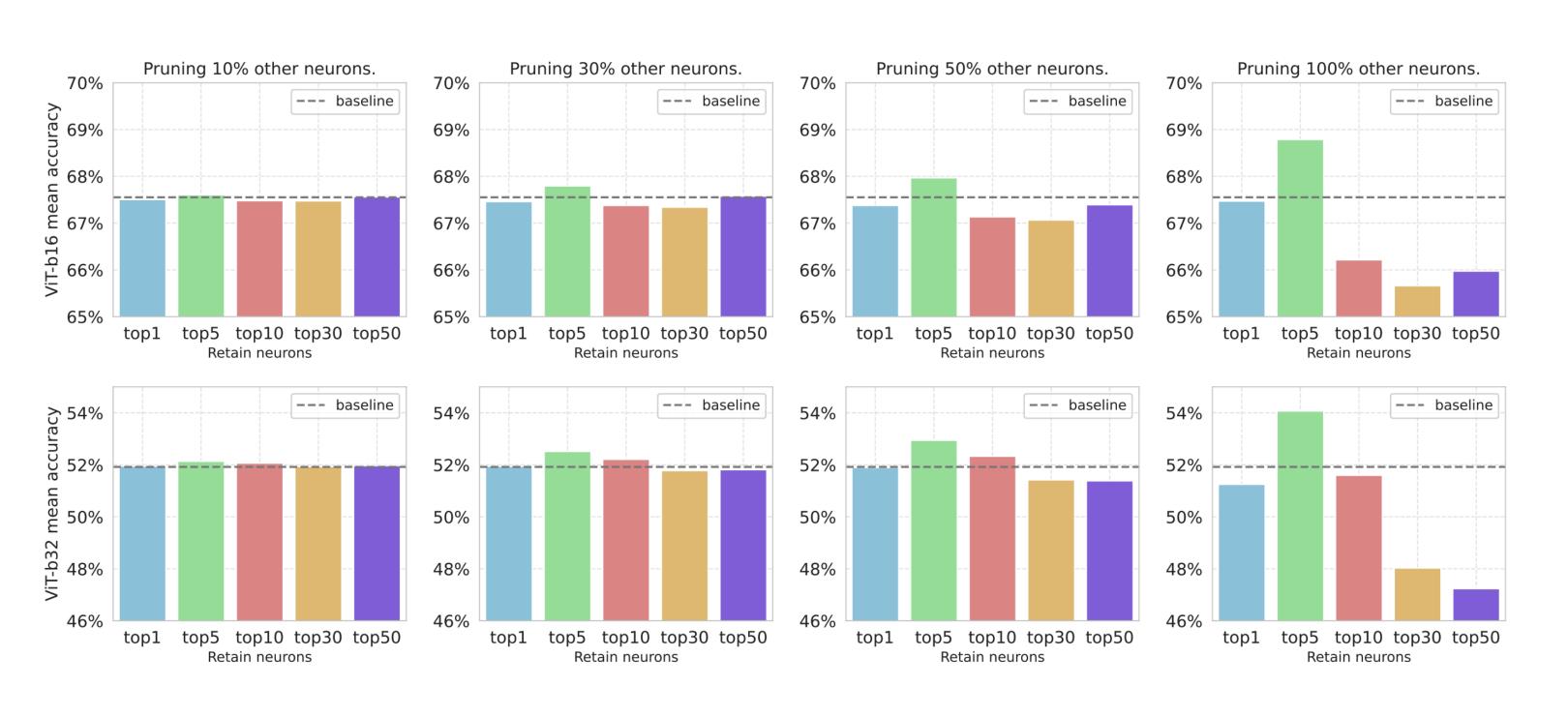


Finding 3: Some certain neurons contribute more at each layer to specific classes.

Inter-class analysis on neuron path:

Finding 4: Neuron paths reveals semantic similarity.

Multi-neuron model pruning:



Finding 5: Neurons within Vision Transformer models are largely redundant, with only a sparse subset significantly impacting model performance.

Future works:

- 1. Neuron Path in more modules.
- 2. Neuron Path in more tasks.
- More applications with Neuron Path.