Salvage: Shapley-distribution Approximation Learning Via Attribution Guided Exploration for Explainable Image Classification

Mehdi Naouar^{1,2,*}, Hanne Raum¹, Jens Rahnfeld¹, Yannick Vogt¹,², Joschka Boedecker¹,²,³, Gabriel Kalweit¹,², Maria Kalweit¹,²

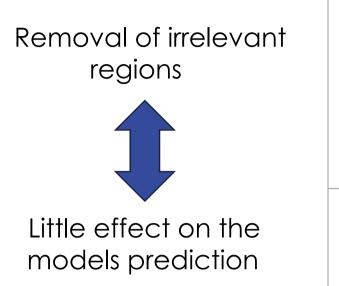
¹University of Freiburg, ²CRIION, ³BrainLinks-BrainTools

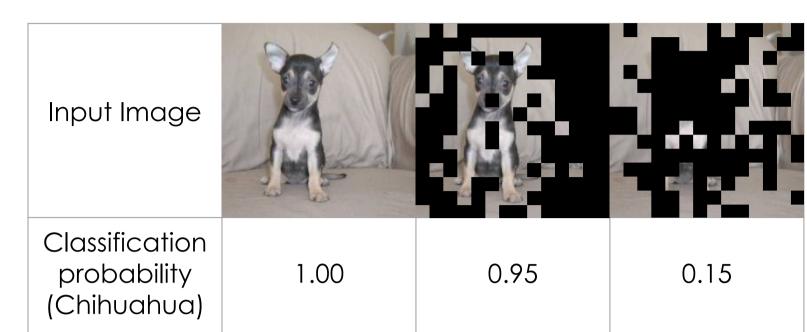
Motivation and Background

Removal-based Principle:

Masking portions of the input image to observe the resulting changes in the model's prediction.

classification probability





Shapley Values Estimation

Let N be a set of features and v(S) the prediction outcome given a feature subset $S \subset N$. The Shapley value ϕ_i of a feature i is obtained as follows:

$$\phi_{i} = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|! (|N| - |S| - 1)!}{|N|!} (v(S \cup \{i\}) - v(S))$$

$$= \sum_{S \subseteq N \setminus \{i\}} w_{S} \cdot v(S \cup \{i\}) - \sum_{S \subseteq N \setminus \{i\}} w_{S} \cdot v(S)$$

	$\overset{ullet}{w_S}$	
$=\sum u$	$v_S \cdot v(S \cup \{i\})$ -	$-\sum w_S \cdot v(S)$
$S \subseteq N \setminus \{i\}$		$S \subseteq N \setminus \{i\}$
	ϕ_i^+	ϕ_i^-

FastShap (Jethani et al., 2022) suggests a Least Square objective for the approximation of the Shapley value over the random mask distribution $p_w(S) \propto w_S$:

$$\mathbb{E}_{p_w(S)} \left[\left(v(S) - \sum_{i \in S} \phi_i \right)^2 \right]$$

Issue: The Mean Square error is designed to approximate scalars, not probability distributions.

Method

Shapley Distributions

Our solution: the sum of the Shapley is mapped to a probability distribution using Softmax/Sigmoid (σ)

The resulting Shapley Distribution is given by:
$$u(S) = \sigma(\sum_{i \in S} \phi_i^+ + \sum_{i \notin S} \phi_i^-)$$

The Shapley distribution is optimized by minimizing its Jensen–Shannon divergence to the target distribution v(S):

$$\underset{\phi^+,\phi^-}{\operatorname{arg\,min}} \ \mathbb{E}_{p_w(S)} \left[D_{JS}(u(S) || v(S)) \right]$$

Attribution Guided Sampling

Problem with random mask distribution: high unbalance between masks yielding high vs low prediction likelihoods Our solution: Importance sampling during training. Two mask splits are sampled:

Split 1: proportional to ϕ (masks with high likelihood)

Split 2: proportional to $-\phi$ (masks with low likelihood)

Classification Aggregation

The attribution scores can be directly mapped to a classification prediction using the Shapley distribution of all image patches. $u(N) = \sigma(\sum_{i \in N} \phi_i^+) \approx v(N)$

Corresponding author*:

Mehdi Naouar

Paper and References:

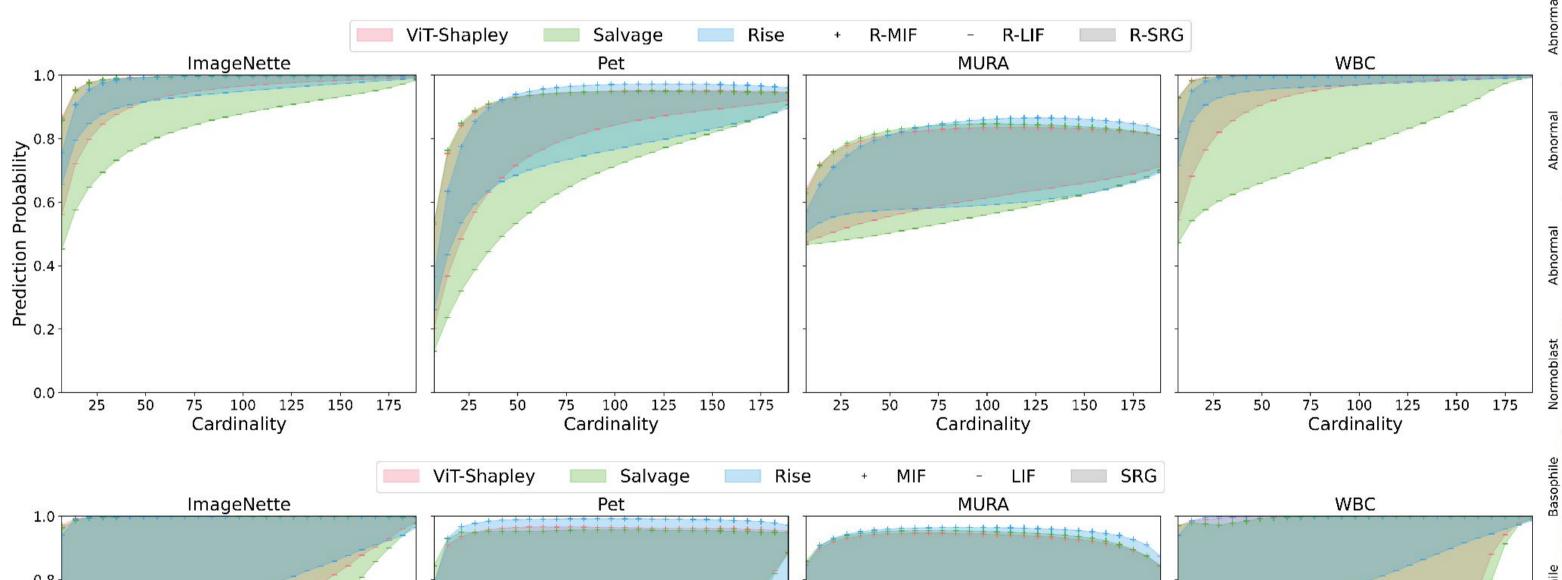
Quantitative Results

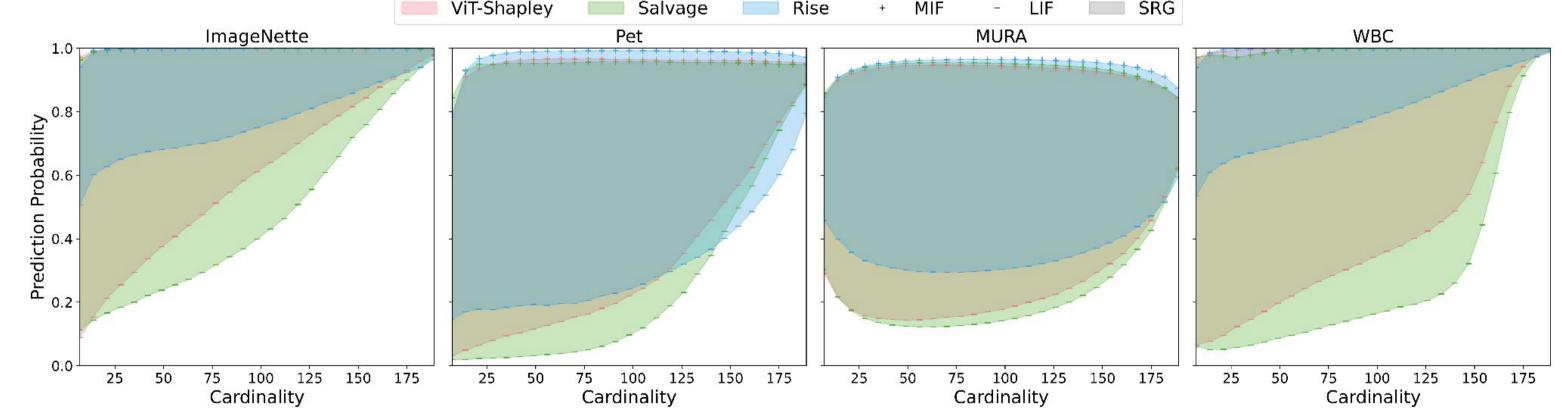
Metric Scores

Table 1: Quantitative results computed on the Pets, ImageNette, WBC, and MURA datasets. The performance of 10 baseline methods is measured in terms of SRG, R-SRG, RMA, and RRA

	Pets			ImageNette		MURA		WBC		
Method	SRG	R- SRG	RMA	RRA	SRG	R- SRG	SRG	R- SRG	SRG	R- SRG
GradCam EigenCam	$10.6 \\ 27.4$	$\frac{3.5}{3.2}$	48.1 48.9	42.7 62.9	-1.9 13.2	-3.3 -3.1	$16.2 \\ 0.1$	10.1 -4.5	-18.5 22.9	-20.2 -7.0
Attn. last Attn. Roll. ViT-CX	47.9 52.0 50.2	9.6 11.2 17.6	$61.1 \\ 51.5 \\ 30.6$	$70.1 \\ 74.6 \\ 67.5$	27.0 32.0 29.9	$3.0 \\ 3.4 \\ 7.5$	22.4 17.6 19.8	7.0 6.3 9.1	42.2 48.1 41.6	$1.6 \\ 2.5 \\ 7.3$
Sal. Maps IntGrad	$51.1 \\ 27.4$	10.8 7.9	$52.7 \\ 51.5$	76.3 58.8	$27.7 \\ 11.0$	$\frac{2.8}{2.2}$	25.3 13.9	8.5 6.1	42.8 11.8	2.1 1.6
LRP	49.5	9.2	63.9	71.8	27.9	3.0	19.3	6.8	37.0	1.7
RISE ViT-Shap Salvage	63.7 61.1 68.5	18.5 14.7 26.3	30.1 52.7 64.9	$47.8 \\ 69.0 \\ 73.5$	22.9 40.3 51.3	$5.4 \\ 6.2 \\ 14.9$	56.5 65.3 68.6	22.1 20.6 25.3	20.7 57.4 69.7	3.5 7.3 22.6
Random	0.0	0.0	30.0	29.4	0.0	0.0	0.0	0.0	0.0	0.0

SRG and R-SRG Curves

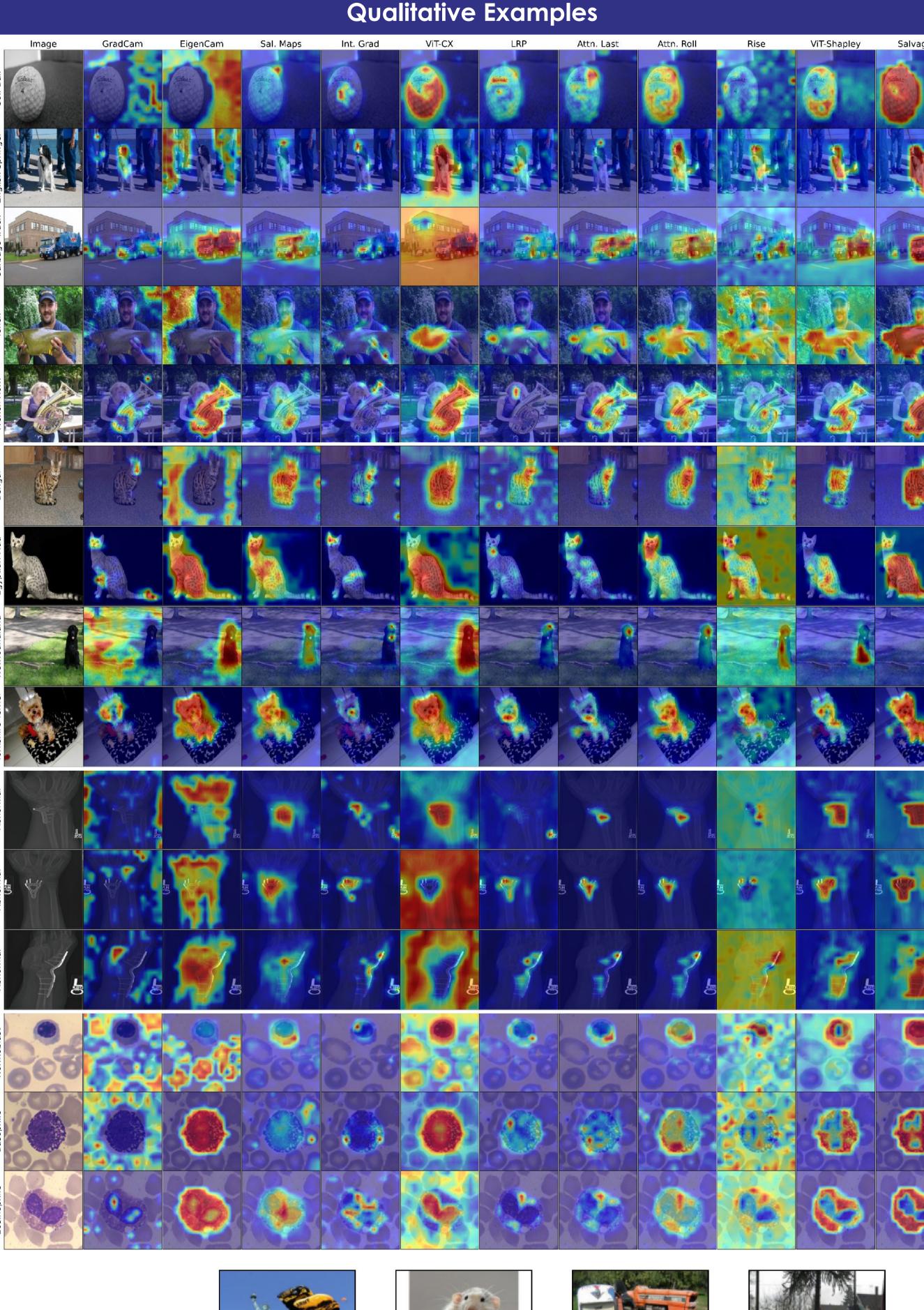




Classification Performance

Table 2: An overview of the classification performance of the original classifier, ViT-Shapley, and Salvage computed on Pet, ImageNette, WBC and MURA.

Model	Pets	ImageNette	WBC	MURA			3.500
	Accuracy	Accuracy	Accuracy	Precision	Recall	F1-score	MCC
Classifier	95.91%	99.64%	99.75%	84.64%	78.88%	81.66%	0.66
ViT-Shapley	0.00%	0.05%	0.69%	59.03%	92.74%	72.14%	0.39
Salvage	93.61%	98.88%	99.75%	80.31%	80.52%	80.41%	0.62



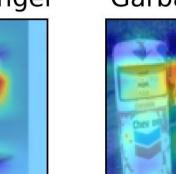
Parachute

Predicted

class

Ground-truth

French Horn



Gas Pump

Chain Saw

Garbage Truck