

Forget the Data and Fine-Tuning! Just Fold the Network to Compress

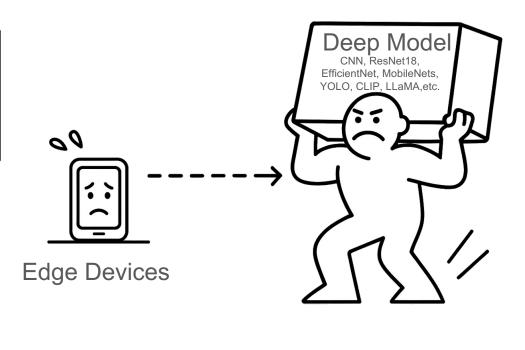
Lothar Thiele ETH Zürich

Olga Saukh TU Graz Complexity Science Hub Vienna

Paper website

Motivation: model compression

So powerful...
But so over-sized.
How to compress a
deep learning model?



Classical solutions: need data or fine-tuning

Full model

-0.6	3.1	7.2
-5.2	4.3	2.8
3.3	9.1	-0.9

Data? Fine-tuning?

0.0	3.1	7.2		
-5.2	4.3	0.0		
3.3	9.1	0.0		

117	183	255
35	205	178
187	255	112

-0.5	4.1
-6.1	2.9
2.3	8.8

Model Pruning

Zero out less-important neurons

X Needs data and fine-tuning

Model Quantization

Use low precision

X Needs data or quantization-aware training

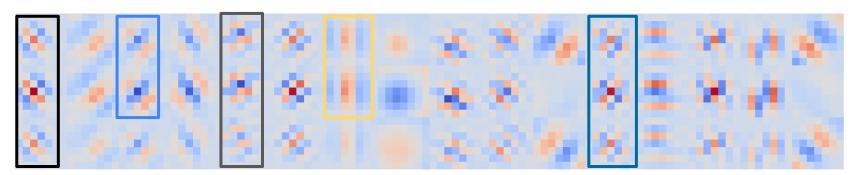
Knowledge Distillation

Train a small model imitating the big model

X Needs data and training

Similar patterns in well-trained weight

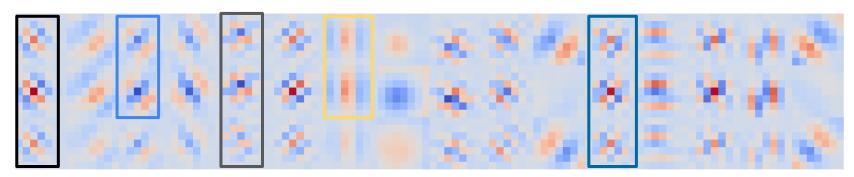
The 1st Conv layer in a ResNet18 trained on ImageNet



Question: "Why not fold these similar structures instead of zeroing them out?"

Similar patterns in well-trained weight

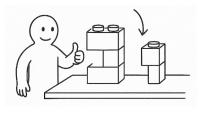
The 1st Conv layer in a ResNet18 trained on ImageNet

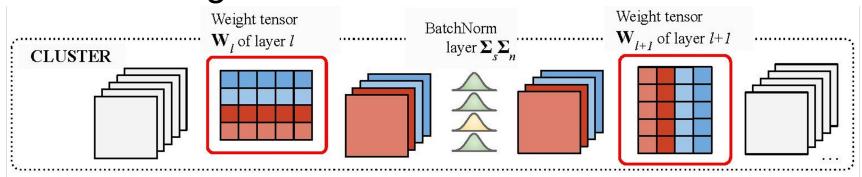


Question: "Why not fold these similar structures instead of zeroing them out?"

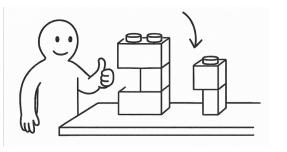
Our contribution: "A data-free and fine-tuning-free model compression method."

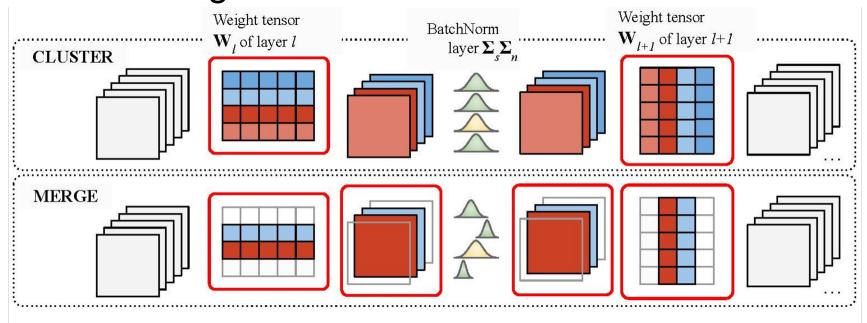
Model Folding!

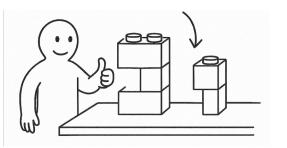




Cluster weights by k-means

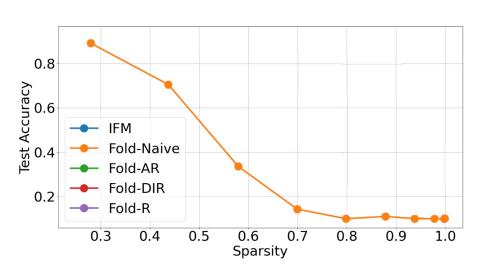






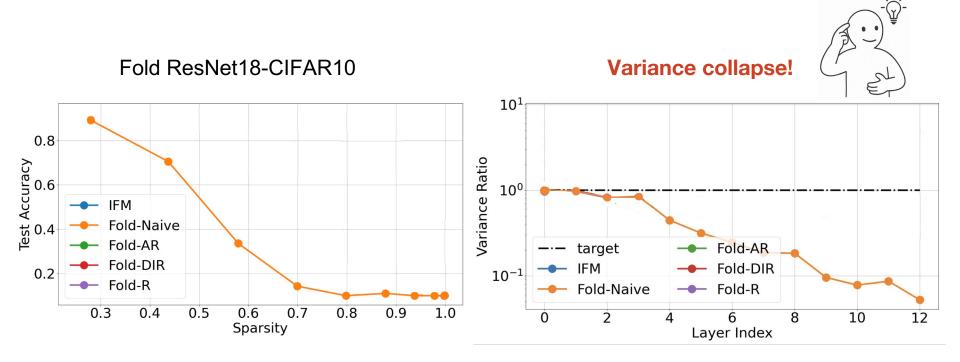
Merge the clustered groups

Fold ResNet18-CIFAR10

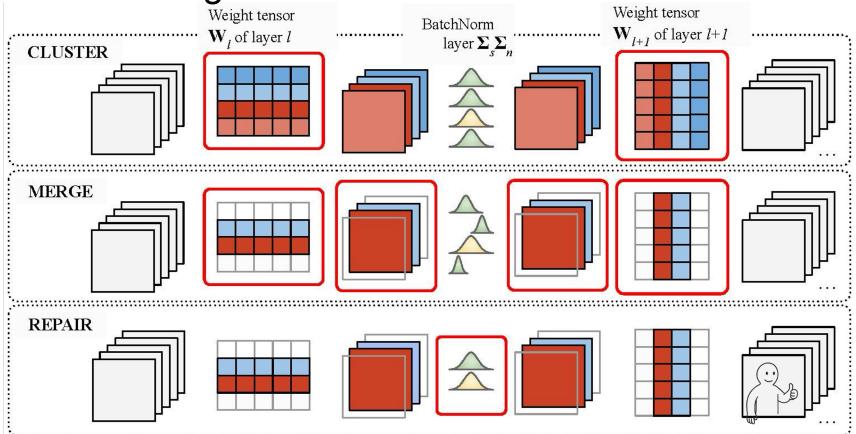


Naive model folding does not work well at high sparsity.

Why?



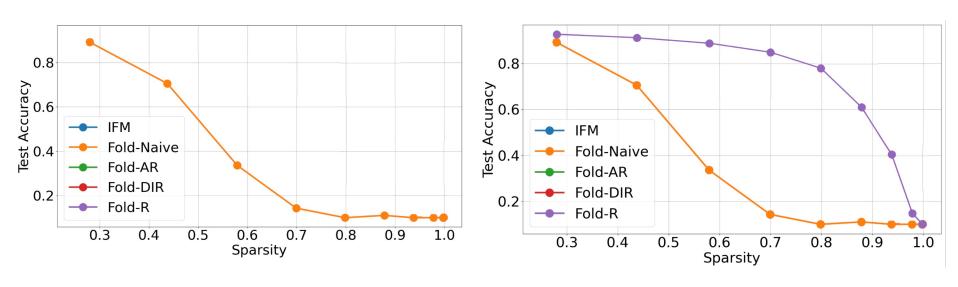
Model Folding with REPAIR



Model Folding with REPAIR

Fold ResNet18-CIFAR10

Fold ResNet18-CIFAR10 with REPAIR



Jordan, Keller, et al. "Repair: Renormalizing permuted activations for interpolation repair." 2022.

→ Rescale each channel in the folded network such that its mean/std matches the uncompressed network

Model Folding with Data-Free REPAIR

Fold-AR = Approximate REPAIR

Algorithm 2 Fold-AR for a Single Layer

Require: $W_{\sigma,l}$, $W_{b,l}$, W_l , W_{l+1}

▶ Input components of the layer

- 1: Compute the normalized weight matrix: $\bar{\mathbf{W}}_l \leftarrow \mathbf{W}_{\sigma l} \mathbf{W}_l$
- 2: Construct the combined weight matrix: $\hat{\mathbf{W}}_l \leftarrow \begin{bmatrix} \mathbf{W}_{l+1}^T & \bar{\mathbf{W}}_l & \text{diag}(\mathbf{W}_{b,l}) \end{bmatrix}$
- 3: Solve the clustering problem:

$$\begin{aligned} & \underset{\mathbf{U}_{l}}{\min} & & \|\hat{\mathbf{W}}_{l} - \mathbf{C}_{l}\hat{\mathbf{W}}_{l}\|_{F}^{2} \\ & \text{s.t.} & & \mathbf{C}_{l} = \mathbf{U}_{l}(\mathbf{U}_{l}^{T}\mathbf{U}_{l})^{-1}\mathbf{U}_{l}^{T} \\ & & & & (\mathbf{U}_{l})_{i,j} \in \{0,1\} \quad \sum_{j} (\mathbf{U}_{l})_{i,j} = \mathbf{1} \end{aligned}$$

- 4: Update the scaling matrix: $\mathbf{W}_{b,l} \leftarrow (\mathbf{U}^T \mathbf{U})^{-1} \mathbf{U}^T \mathbf{W}_{b,l} \mathbf{U}$
- 5: Update the second-layer weights: $\mathbf{W}_{l+1}^T \leftarrow \mathbf{U}^T \mathbf{W}_{l+1}^T$
- 6: Update the current-layer weights: $\bar{\mathbf{W}}_l \leftarrow (\mathbf{U}^T \mathbf{U})^{-1} \bar{\mathbf{U}}^T \bar{\mathbf{W}}_l$
- 7: **for** c = 1, ..., m **do**

- ▶ Adjust scaling factors for each cluster
- 8: Compute cluster size: $N_c \leftarrow \sum_i I(\mathbf{U}_{i,c} = 1) \triangleright I(\cdot)$ is the indicator function
- 9: Compute intra-cluster correlation:

$$E[c] \leftarrow \frac{1}{N_c^2 - N_c} \sum_{i,j} \frac{\bar{\mathbf{w}}_{l,i} \cdot \bar{\mathbf{w}}_{l,j}^T}{\sqrt{\|\bar{\mathbf{w}}_{l,i}\|^2 \|\bar{\mathbf{w}}_{l,j}\|^2}} I(\mathbf{U}_{i,c} = \mathbf{U}_{j,c} = 1) I(i \neq j)$$

10: Update the scaling factor for cluster c:

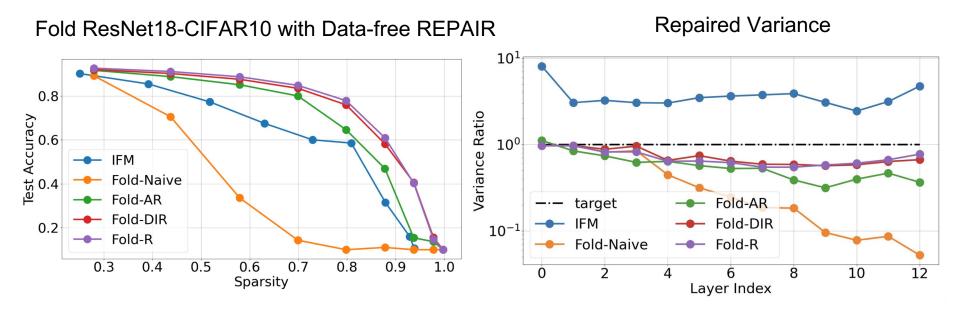
$$\mathbf{W}_{\sigma,l,c,c} \leftarrow \mathbf{W}_{\sigma,l,c,c} \frac{N_c}{\sqrt{N_c + (N_c^2 - N_c)E[c]}}$$

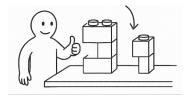
11: end for

Fold-DIR = Deep Inversion REPAIR

H. Yin et al, Dreaming to distill: Data-free knowledge transfer via deepinversion, 2020

Model Folding with Data-free REPAIR





Model Folding is data-free and Fine-tuning-free

Model folding in combination with standard pipelines for edge deployment → 2.5x faster, 1.8x less RAM

Sparsity	10%			25%			50%			70%		
	Runtime	RAM	Flash									
NVIDIA Jetson Nano NVI24	$2 \mathrm{ms}$	59.5K	3.4M	$2 \mathrm{ms}$	55.7K	2.8M	$1 \mathrm{ms}$	48.0K	1.9M	$1 \mathrm{ms}$	36.5K	1.2M
ESP-EYE [Esp24]	$2591 \mathrm{ms}$	59.5K	3.4M	$1868 \mathrm{ms}$	55.7K	2.8M	$1532 \mathrm{ms}$	48.0K	1.9M	$1186 \mathrm{ms}$	36.5K	1.2M
Arduino Nano 33 BLE Sense Ard24	$6831 \mathrm{ms}$	59.5K	3.4M	$3726 \mathrm{ms}$	55.7K	2.8M	$4218 \mathrm{ms}$	48.0K	1.9M	$2969 \mathrm{ms}$	36.5K	1.2M

Prune ratio	Method	Data usage	WikiText2↓	BoolQ	WinoGrande	ARC-e	ARC-c	Average†
0%	LLaMA-7B (Touvron et al., 2023a)	/	5.68	75.05	69.93	75.34	41.89	65.55
20%	Magnitude Prune	/	36136	43.21	49.40	27.23	21.59	35.36
20%	LLM-Pruner (Ma et al., 2023)	Gradients	10.53	59.39	61.33	59.18	37.18	54.27
20%	FLAP (An et al., 2023)	Calibration	6.87	69.63	68.35	69.91	39.25	61.79
20%	Wanda_sp (Sun et al., 2023)	Calibration	8.22	71.25	67.09	71.09	42.58	63.00
20%	SliceGPT (Ashkboos et al., 2024)	Calibration	7.00	57.80	67.96	62.67	36.01	56.11
20%	ShortGPT (Men et al., 2024)	Calibration	15.48	62.17	67.40	58.88	31.91	55.09
20%	Model Folding	/	13.33	62.29	62.19	49.83	26.37	50.17

Summary

- Model Folding is a data-free and fine-tuning-free model compression method.
- 2. Fold-AR, Fold-DIR are data-free REPAIR approximation methods.
- 3. Model folding surpasses the performance of SOTA data-free model compression.

Thank you!

