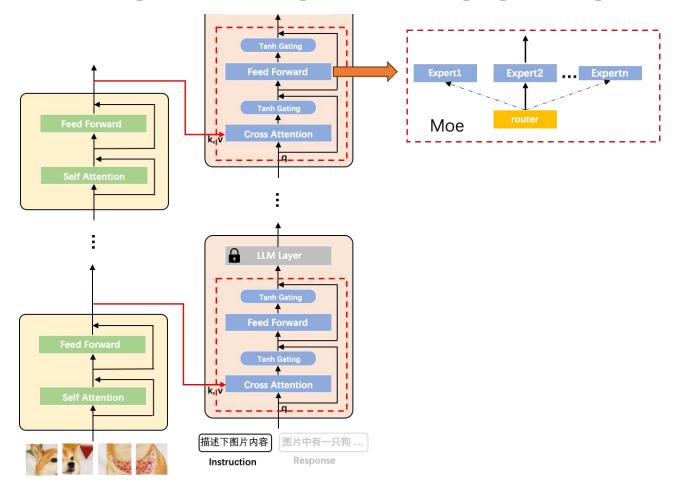
Solving Token Gradient Conflict in Mixture-of-Experts for Large Vision-Language Model

ICLR 2025

Codes will be released in https://github.com/longrongyang/STGC

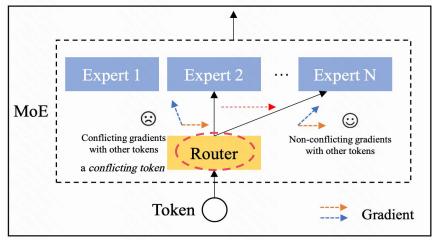
Mixture-of-Experts (MoE)

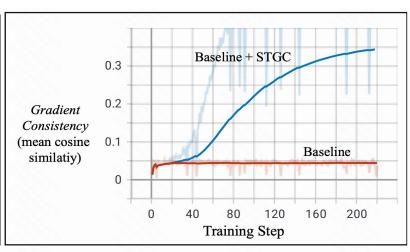
- The MoE system replaces the FFN layer in LLM with multiple experts
- The router predicts the probability of each token dispatched to different experts. Tokens are then dispatched to the experts with the Top-*k* predicted probability



The routing of tokens

- A critical goal of token routing is to reduce interference between diverse data
- How to define conflicting tokens?
 - Related LoRA-MoE studies: Sample-level instruction features or embeddings
 - These techniques suffer from optimization interference risk and token-level interference within a sample
 - This study models data interference through the lens of token-level gradients
- *How to solve conflicting tokens?*
 - We propose the STGC: A novel loss to move *conflicting tokens* to other experts to reduce conflicts





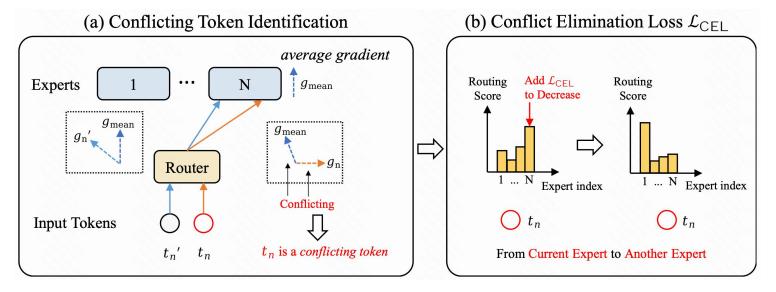
THE JANG UNIVERSITY

(a) Our goal: reduce gradient conflicts of tokens within an expert

(b) Gradient consistency of tokens within an expert before and after using STGC

Eliminate conflicts

• The goal is to reduce the interference between different data: Use token-level gradients to depict the relationships (*conflict or no conflict*) between data within an expert.



Conflict elimination loss

$$egin{aligned} z_{ ext{moe}}'(t_n) &= -z_{ ext{moe}}(t_n), \ p_{ ext{moe}}'(t_n)_i &= rac{e^{z_{ ext{moe}}'(t_n)_i}}{\sum_{j=1}^E e^{z_{ ext{moe}}'(t_n)_j}}, \ \mathcal{L}_{ ext{CEL}} &= rac{1}{N_{all} \cdot E} \sum_{n=1}^{N_{all}} \sum_{i=1}^E \log(p_{ ext{moe}}'(t_n)_i) \cdot q_{ ext{moe}}(t_n)_i, \end{aligned}$$

Encourage the decrease of scores

- Conflicting token identification
 - Use the token-level gradients within each expert to identify "conflicting tokens"
- Conflict elimination loss
 - Add a novel loss to optimize token routing, and move the "conflicting tokens" from their current experts to other experts for processing

STGC as a plug-in

Method	LLM	Act.	VQA ^{v2}	GQA	VisWiz	SQA ^I	VQA ^T	POPE	MME	MMB	MM-Vet	Avg
MoE-LLaVA-4Top1 +STGC					25.7 27.4							53.5 54.6
MoE-LLaVA-4Top2 +STGC					36.2 37.7						26.9 28.2	57.3 58.0
MoE-LLaVA-4Top2 +STGC	P-2.7B P-2.7B										34.3 33.3	61.1 61.8
MoE-LLaVA-4Top2 [†] +STGC	1				43.7 45.1				1431.3 1447.6		35.9 35.7	62.9 63.5

Method	LLM	Act.	VQA ^{v2}	GQA	VisWiz	SQA ^I	VQA ^T	POPE	MME	MMB	MM-Vet	AI2D	ChartQA	DocVQA	Avg
Dense Model LLaVA-1.5	V-13B	13B	80.0*	63.3*	53.6	71.6	61.3	85.9	1531.3	67.7	35.4	49.6	18.1	24.0	55.5
Sparse Model MoE-LLaVA MoE-LLaVA DYNMOE-LLaVA MoE-LLaVA [†]	S-1.6B P-2.7B P-2.7B P-2.7B	3.4B	77.6* 77.9*	60.3* 61.4* 61.6* 62.6*	36.2 43.9 45.1 43.7	62.6 68.5 68.0 70.3	50.1 51.4 51.8 57.0	85.7 86.3 86.0 85.7	1318.2 1423.0 1429.6 1431.3	65.2 66.6	26.9 34.3 33.6 35.9	48.8 58.8 - 59.5	15.3 19.9 - 15.4	18.4 21.5 - 25.6	49.2 53.5 - 54.9
Our Method [†]	P-2.7B	3.6B	80.0*	63.0*	48.6	70.9	58.8	86.5	1481.7	71.0	40.7	64.5	44.7	42.1	61.0

- As a plug-in, STGC consistently brings reliable model performance improvements
- During inference, activating 3.6B parameters performs better than a dense model activating 13B parameters

Method	LLM	Data	VQA ^{v2}	GQA	VisWiz	SQA ^I	VQA ^T	POPE	MME	MMB	MM-Vet	Avg
MoE-LLaVA-4Top2 [†]	P-2.7B	665K	79.9*	62.6*	43.7	70.3	57.0	85.7	1431.3	68.0	35.9	62.9
+STGC	P-2.7B	665K	80.3*	63.2*	45.1	70.3	57.4	86.1	1447.6	69.7	35.7	63.5
MoE-LLaVA-4Top2 [†]	P-2.7B	1021K	79.7*	63.0*	42.7	71.1	56.9	84.3	1439.9	70.4	42.2	63.8
+STGC	P-2.7B	1021K	80.0*	63.0*	48.6	70.9	58.8	86.5	1481.7	71.0	40.7	64.9

More Training
Data

	COLA	MRPC	QNLI	MNLI	RTE	Avg
MoE-8Top2 (Guo et al., 2024)	64.5	90.2	92.4	86.7	74.9	81.7
DYNMOE (Guo et al., 2024)	65.2	90.6	92.6	86.4	73.4	81.6
MoE-8Top2*	64.5	90.0	93.4	86.9	72.9	81.5
+STGC	66.8	91.2	93.8	87.6	74.7	82.8

Language Tasks

- The larger the training data size, the more significant the performance gain brought by STGC
- STGC can bring more obvious performance gains on large language models

