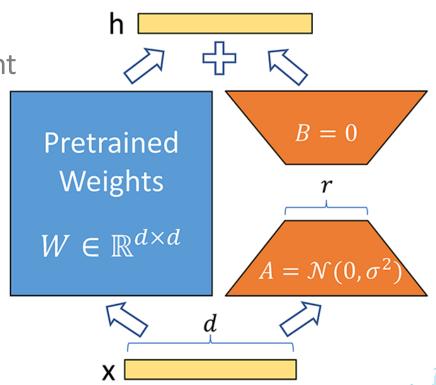
LoRA Done RITE: Robust Invariant Transformation Equilibration for Lora Optimization

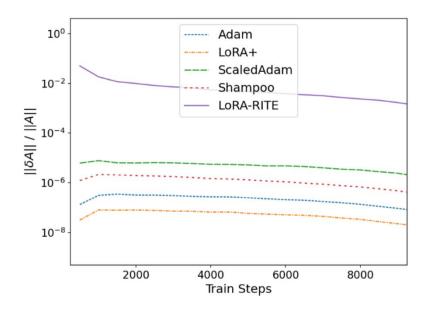
Jui-Nan Yen *1 Si Si 2 Zhao Meng 2 Felix Yu 2 Sai Surya Duvvuri *3 Inderjit S. Dhillon 2 Cho-Jui Hsieh 12 Sanjiv Kumar²

*Work done while at Google

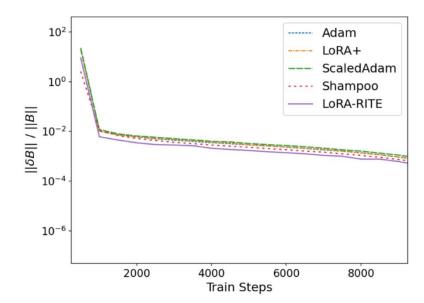


LoRA Architecture

- LoRA decomposes the model weight into two matrices W and H.
- ► *H* has a low-rank structure:

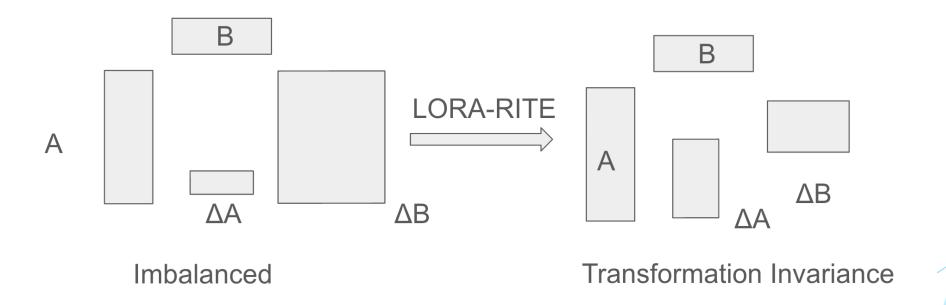

$$H = AB^T$$

 $h = (W + H)x = Wx + AB^Tx.$



Issues of Lora Training

- ► Factor A gets **extremely small** updates compared to Factor B with traditional optimizers (blue line for Adam).
- Our new optimizer LoRA-RITE (purple line) addresses this issue.


(a) Update magnitude of the A factor

(b) Update magnitude of the \boldsymbol{B} factor

A new optimizer for LoRA: LORA-RITE

▶ LoRA-RITE is **transformation invariant**, prevents imbalanced updates.

Definition of Invariance

Equivalent Lora pairs:

$$H = A_1 B_1^T = A_2 B_2^T$$

▶ **Invariance**: for equivalent Lora pairs, an optimizer should produce the same update to *H*,

$$egin{aligned} H + \Delta H &= (A_1 + \Delta A_1)(B_1 + \Delta B_1)^T \ &= (A_2 + \Delta A_2)(B_2 + \Delta B_2)^T \end{aligned}$$

Transformation Invariance

Transformation Invariance:

$$oldsymbol{A}_2 = oldsymbol{A}_1 oldsymbol{R}, oldsymbol{B}_2 = oldsymbol{\hat{B}}_1 oldsymbol{R}^{- op}$$

Scale Invariance:

$$A_2 = sA_1, B_2 = (1/s)B_1$$

None of the existing optimizers, e.g., Adam, are even scale invariant.

Lack of Invariance Can Lead to Imbalanced Updates

► For SGD, let

$$A_2 = sA_1, B_2 = (1/s)B_1$$

we have

$$\Delta \mathbf{A}_2 = -\nabla \mathbf{H} \mathbf{B}_2 = -(1/s)\nabla \mathbf{H} \mathbf{B}_1 = (1/s)\Delta \mathbf{A}_1 \quad \text{(since } \mathbf{B}_2 = (1/s)\mathbf{B}_1)$$

$$\Delta \mathbf{B}_2 = -\nabla \mathbf{H}^{\top} \mathbf{A}_2 = -s\nabla \mathbf{H}^{\top} \mathbf{A}_1 = s\Delta \mathbf{B}_1 \quad \text{(since } \mathbf{A}_2 = s\mathbf{A}_1).$$

This leads to imbalanced updates

$$\|\Delta \mathbf{A}_2\|/\|\mathbf{A}_2\| = (1/s^2)\|\Delta \mathbf{A}_1\|/\|\mathbf{A}_1\|$$

 $\|\Delta \mathbf{B}_2\|/\|\mathbf{B}_2\| = (s^2)\|\Delta \mathbf{B}_1\|/\|\mathbf{B}_1\|$

Decomposition of Basis and Magnitude

► The lora factors can be decomposed into directions (basis) and magnitudes:

$$A = U_A R_A, B = U_B R_B$$
 basis magnitude

Equivalent lora pairs

$$H = A_1 B_1^T = A_2 B_2^T$$

have equivalent directions (basis) but different magnitudes

$$\operatorname{span}(U_{A_1}) = \operatorname{span}(U_{A_2}) \operatorname{span}(U_{B_1}) = \operatorname{span}(U_{B_2})$$

Unmagnified Gradient

We define the unmagnified gradient,

$$\nabla A = \nabla HB \quad \longrightarrow \quad \bar{\nabla} A = \nabla H U_B$$

which removes the influence of the lora weight magnitudes.

- This is the same for all equivalent lora pairs up to the choice of the basis.
- Can be seen as the projection of the full gradient to the lora basis.

LoRA-Rite Update

Our update

$$\Delta A = \bar{\nabla} A (\bar{L}_A)^{-1/2} R_B^{-7}, \bar{L}_A = (\bar{\nabla} A)^{\scriptscriptstyle T} \bar{\nabla} A$$
 without magnitude scaling

 Scaling cancels out the multiplication of A/B and achieves transformation invariance

$$\Delta A_1 B_1^T = \bar{\nabla} A_1 (\bar{L}_{A_1})^{-1/2} (R_{B_1}^{-T} B_1^T) = \bar{\nabla} A_1 (\bar{L}_{A_1})^{-1/2} U_{B_1}^T$$
$$= \bar{\nabla} A_2 (\bar{L}_{A_2})^{-1/2} U_{B_2}^T = \Delta A_2 B_2^T$$

Incorporating Momentum

- ➤ To incorporate momentum while maintaining transformation invariance, one must account for the varying basis at each step.
- We use

$$oldsymbol{P}_{oldsymbol{A}_t} := (oldsymbol{U}_{oldsymbol{B}_t})^ op oldsymbol{U}_{oldsymbol{B}_{t-1}}$$

to transform the momentum to the new basis

$$\bar{\boldsymbol{M}}_{\boldsymbol{A}_t} = \beta_1 \bar{\boldsymbol{M}}_{\boldsymbol{A}_{t-1}} \boldsymbol{P}_{\boldsymbol{A}_t}^{\top} + (1 - \beta_1) \bar{\boldsymbol{S}}_{\boldsymbol{A}_t}$$

before the accumulation of the preconditioned updates $\,ar{S}_{m{A}_t}$

Update with momentum

$$\Delta A = \bar{M}_{A_t} R_B^{-T}$$

Algorithmic Comparison with Adam

- ➤ We use unmagnified version of the gradients to remove the influence of weight magnitudes.
- We transform the momentum at each step for correct accumulation.

Complexity

- Let *r* be the rank of LoRA, and *n* is the dimension of the weight matrix, *n>>r*.
- ► LoRA-RITE is faster than Shampoo, with time/space complexity similar to Adam.

	Time complexity	Space complexity
Forward/Backward	$\Omega(n^2)$	$\Omega(n^2)$
Adam (first-order)	O(nr)	O(nr)
Shampoo (second-order)	$O(n^3+r^3)$	$O(n^2+r^2)$
LoRA-RITE (second-order)	O(nr ²)	O(nr+r ²)

Experiment - Public LLM Benchmarks

Table 2: Experimental results on LLM benchmarking datasets.

Model	Optimizer	HellaSwag	ArcChallenge	GSM8K	OpenBookQA	Avg.
Gemma-2B	Adam	83.76	45.31	24.26	64.0	54.33
	LoRA+	83.75	45.31	23.65	64.4	54.28
	ScaledAdam	83.52	45.22	23.96	64.8	54.38
	Shampoo	83.26	44.88	23.35	63.6	53.77
	Lamb	86.60	47.35	26.76	68.0	57.18
	LoRA-RITE	87.28	49.06	30.10	68.8	58.81
Gemma-7B	Adam	94.07	54.78	48.37	77.60	68.71
	LoRA+	93.99	54.01	48.75	77.60	68.59
	ScaledAdam	93.31	52.90	48.07	75.80	67.52
	Shampoo	94.15	52.47	49.05	76.80	68.12
	Lamb	95.11	69.80	50.64	83.20	74.69
	LoRA-RITE	95.59	71.76	55.50	84.80	76.91

Experiment - Public LLM Benchmarks

Table 2: Experimental results on LLM benchmarking datasets.

Model	Optimizer	HellaSwag	ArcChallenge	GSM8K	OpenBookQA	Avg.
Gemma-2B	Adam	83.76	45.31	24.26	64.0	54.33
	LoRA+	83.75	45.31	23.65	64.4	54.28
	ScaledAdam	83.52	45.22	23.96	64.8	54.38
	Shampoo	83.26	44.88	23.35	63.6	53.77
	Lamb	86.60	47.35	26.76	68.0	57.18
	LoRA-RITE	87.28	49.06	30.10	68.8	58.81
Gemma-7B	Adam	94.07	54.78	48.37	77.60	68.71
	LoRA+	93.99	54.01	48.75	77.60	68.59
	ScaledAdam	93.31	52.90	48.07	75.80	67.52
	Shampoo	94.15	52.47	49.05	76.80	68.12
	Lamb	95.11	69.80	50.64	83.20	74.69
	LoRA-RITE	95.59	71.76	55.50	84.80	76.91

3.5 and 8.2 percentage point of accuracy gain over Adam!

Thank you!