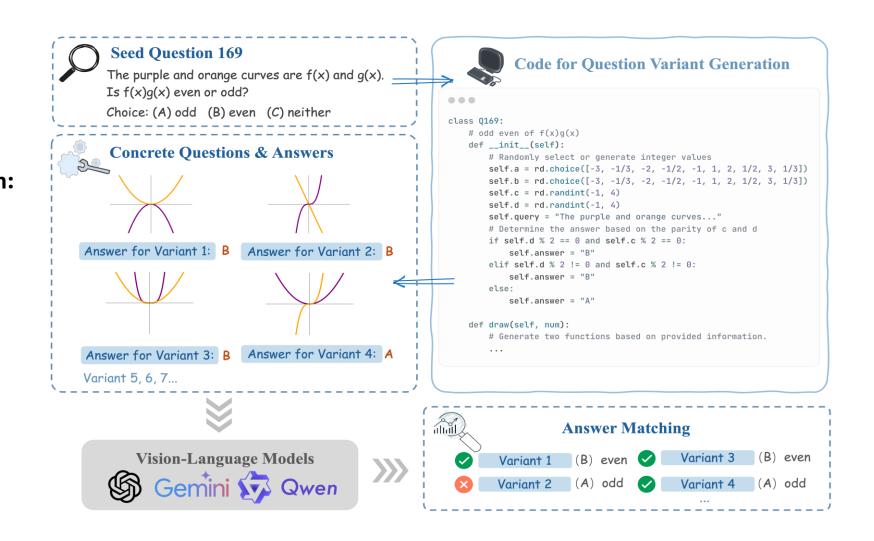
DynaMath: A Dynamic Visual Benchmark for Evaluating Mathematical Reasoning Robustness of VLMs

ICLR 2025

Chengke Zou, Xingang Guo, Rui Yang, Junyu Zhang, Bin Hu, Huan Zhang

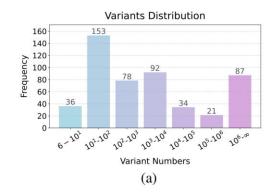
Motivation

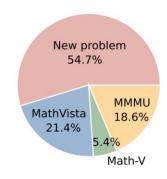

- VLMs have shown promise for mathematical reasoning tasks with visual contexts.
- Existing benchmarks are all static, limiting the assessment of robustness.
- Key Challenge: VLMs may struggle with variations of simple math problems that humans can solve easily.
- Goal: Design a benchmark to assess the robustness of VLMs under many variants of one seed question.

Contributions

- DynaMATH Benchmark: 501 seed questions generating 5010 variants
- Evaluated 14 state-of-the-art VLMs
- Unveils gaps between average-case and worst-case accuracy
- Provides insights into robustness and failure modes of VLMs.

Benchmark Design

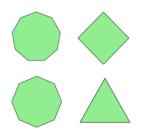

- Seed Questions: curated from diverse math topics.
- Program-Based Generation:
 uses python programs to
 create variants.
- Variants: numerical values, geometric transformations, function types, etc.



Benchmark Design

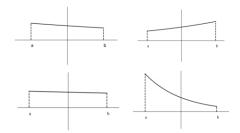
Statistic	Number					
Total <i>seed</i> questions (programs)	501					
 Created from existing dataset 	227 (45.3%)					
 Newly designed questions 	274 (54.7%)					
Topics						
- Solid geometry (SG)	15 (3.0%)					
- Puzzle test (PT)	17 (3.4%)					
- Arithmetic (AR)	26 (5.2%)					
- Scientific figure (SF)	45 (9.0%)					
- Graph theory (GT)	48 (9.6%)					
- Algebra (AL)	51 (10.2%)					
- Plane geometry (PG)	77 (15.4%)					
- Analytic geometry (AG)	97 (19.4%)					
- Statistics (ST)	125 (25.0%)					
Levels						
 Elementary school (EL) 	63 (12.6%)					
- High school (HI)	277 (55.3%)					
- Undergraduate (UN)	161 (32.1%)					
Question Types						
 Numerical questions 	296 (59.1%)					
 Multiple-choice questions 	174 (34.7%)					
- Free-form questions	31 (6.2%)					

Table 1: Statistics of DYNAMATH.



(b)

Figure 4: (a) Variant number distribution and (b) source composition of DYNAMATH.


$$A = \begin{bmatrix} -4.0 & 4.6 & 9.7 \\ -1.0 & 8.3 & -3.3 \\ -0.3 & -7.4 & -6.2 \end{bmatrix} \quad A = \begin{bmatrix} -1.9 & 9.5 & -7.0 \\ -7.2 & -5.3 & 4.2 \\ -0.7 & -6.0 & -0.4 \end{bmatrix}$$

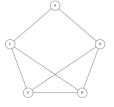
$$A = \begin{bmatrix} -0.2 & -0.2 & -6.9 \\ 8.2 & 2.9 & -5.5 \\ -0.4 & 8.7 & -8.5 \end{bmatrix} A = \begin{bmatrix} -5.1 & 1.1 & -4.0 \\ -5.2 & 7.8 & 2.6 \\ 3.5 & -7.2 & 0.0 \end{bmatrix}$$

(a) Numerical Value Variants

(b) Geometric Transformations

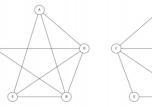
f1 = O(1)	f2 = O(N^2)	
f3 = O(N)	$f4 = O(N^2 \log N)$	

f1 = O(logN)	f2 = O(N!)
f3 = O(N^3)	f4 = O(N^2logN)


f1 = O(NlogN)	f2 = O(2^N)
f3 = O(N!)	f4 = O(N)

f1 = O(NlogN)	f2 = O(N^2)
f3 = O(N^3)	f4 = O(N^2logN)

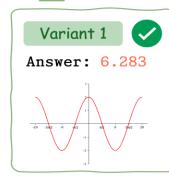
(c) Function Type Variants

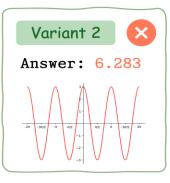

(d) Symbolic Substitution

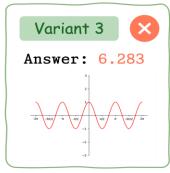
19:45

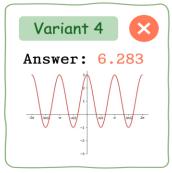
(e) Real-life Contexts Variants

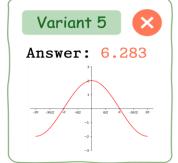
10:08


02:41


(f) Graph Structure Variants


Benchmark Problem Example I




Seed Question 12: What is the period of this function? Answer the question with a floating-point number.

Evaluation Metrics

Average-Case Accuracy (Aavg): measures mean performance.

$$\mathcal{A}_{avg} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{M} \sum_{j=1}^{M} \mathbb{I}[\operatorname{Ans}(i,j) = \operatorname{GT}(i,j)].$$

Worst-Case Accuracy (Awst): Focuses on hardest variants.

$$\mathcal{A}_{wst} = \frac{1}{N} \sum_{i=1}^{N} \min_{j \in [1,M]} \mathbb{I}[\operatorname{Ans}(i,j) = \operatorname{GT}(i,j)]$$

Reasoning Robustness (RR): ratio of Aswt to Aavg.

$$RR = \frac{\mathcal{A}_{wst}}{\mathcal{A}_{avg}},$$

Evaluation Results

Model	ALL	PG	SG	AG	AL	PT	GT	ST	SF	AR	EL	HI	UN
Closed-sourced Large Multimodal Models (LMMs)													
Zero-shot GPT-4o	63.7	56.8	52.0	61.0	76.9	51.8	58.1	69.3	62.4	61.5	68.6	61.8	36.8
Zero-shot Claude-3.5	64.8	49.9	49.3	55.3	81.0	44.1	69.4	78.2	62.2	61.2	66.7	62.6	33.3
Zero-shot Gemini Pro 1.5	60.5	52.7	42.7	61.6	70.8	20.6	65.2	69.8	50.2	54.2	62.9	59.2	37.1

Average Accuracy

Model	ALL	PG	SG	AG	AL	PT	GT	ST	SF	AR	EL	HI	UN
Closed-sourced Large Multimodal Models (LMMs)													
Zero-shot GPT-4o	34.7	37.7	33.3	25.8	54.9	11.8	18.8	38.4	35.6	46.2	46.0	34.3	31.1
Zero-shot Claude-3.5	35.3	22.1	26.7	18.6	62.7	23.5	27.1	53.6	24.4	42.3	49.2	33.2	33.5
Zero-shot Gemini Pro 1.5	26.9	28.6	20.0	19.6	39.2	5.9	22.9	35.2	15.6	30.8	41.3	26.7	21.7

Worst-case Accuracy

Evaluation Results

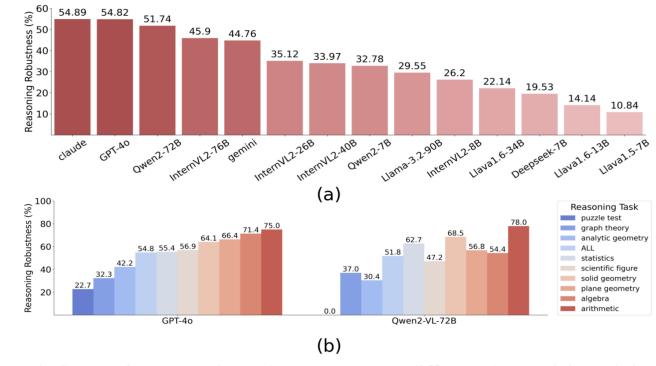


Figure 5: Comparing reasoning robustness across different (a) models and (b) topics.

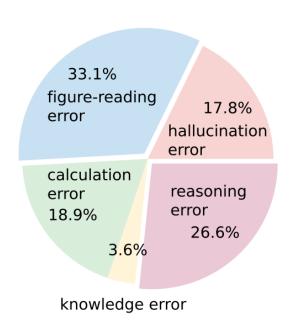


Fig: Failure Analysis

Conclusion and Future Work

Conclusion:

- Significant robustness gaps in VLMs.
- Dynamic benchmark provides a controllable way to examine model's robustness.

Future Work:

- Scale up the benchmark design with the aid of LLMs.
- Improve model's reasoning robustness.