The Breakdown of Gaussian Universality in Classification of High-Dimensional Linear Factor Mixtures

Xiaoyi MAI*, Zhenyu LIAO†

*University of Toulouse - Jean Jaurès, Toulouse Mathematics Institute, France †EIC Huazhong University of Science & Technology, China

ICLR, 2025

Introduction: Empirical Risk Minimization

Supervised ML: building a classifier from a training set of $\{(\mathbf{x}_i,y_i)\}_{i=1}^n$ with feature vectors $\mathbf{x}_i \in \mathbb{R}^p$ and class labels $y_i \in \{-1,1\}$.

Introduction: Empirical Risk Minimization

Supervised ML: building a classifier from a training set of $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ with feature vectors $\mathbf{x}_i \in \mathbb{R}^p$ and class labels $y_i \in \{-1, 1\}$.

Empirical Risk Minimisation (ERM): many supervised algorithms (e.g., SVM, LR, ANN with pretrained hidden layers) can be summarized by the following ERM

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^p} \underbrace{\frac{1}{n} \sum_{i=1}^n \ell\left(y_i, \boldsymbol{\beta}^\mathsf{T} \mathbf{x}_i\right) + \underbrace{\frac{\boldsymbol{\lambda} \|\boldsymbol{\beta}\|^2}{\text{regularization term}}}}_{\text{Empirical loss}}.$$

Introduction: Empirical Risk Minimization

Supervised ML: building a classifier from a training set of $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ with feature vectors $\mathbf{x}_i \in \mathbb{R}^p$ and class labels $y_i \in \{-1, 1\}$.

Empirical Risk Minimisation (ERM): many supervised algorithms (e.g., SVM, LR, ANN with pretrained hidden layers) can be summarized by the following ERM

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^p} \underbrace{\frac{1}{n} \sum_{i=1}^n \underline{\ell}\left(y_i, \boldsymbol{\beta}^\mathsf{T} \mathbf{x}_i\right)}_{\text{Empirical loss}} + \underbrace{\frac{\boldsymbol{\lambda} \|\boldsymbol{\beta}\|^2}{\text{regularization term}}}_{\text{regularization term}}.$$

Popular choices of ℓ: square loss for least squares method, logistic loss for LR, hinge loss for SVM, etc.

Introduction: Performance Analysis in the Big Data Regime

Modern ML: comparably numerous features and samples, i.e., $p \sim n \gg 1$.

Figure: Image Classification

Figure: Spam Detection

Introduction: Performance Analysis in the Big Data Regime

Modern ML: comparably numerous features and samples, i.e., $p \sim n \gg 1$.

Figure: Spam Detection

Figure: Image Classification

Analysis of Modern ML:

- ▶ Complications of $n \sim p$:
 - Performance sensitive to the sample size n/p, and the hyperparameters ℓ, λ .
 - $lackbox{ Random classifier } \hat{eta}$ depending on $\{(\mathbf{x}_i,y_i)\}_{i=1}^n$ in a non-linear and implicit manner.

Introduction: Performance Analysis in the Big Data Regime

Modern ML: comparably numerous features and samples, i.e., $p \sim n \gg 1$.

Figure: Spam Detection

Figure: Image Classification

Analysis of Modern ML:

- ▶ Complications of $n \sim p$:
 - Performance sensitive to the sample size n/p, and the hyperparameters ℓ, λ .
 - Random classifier $\hat{\beta}$ depending on $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ in a non-linear and implicit manner.
- ▶ Technical conveniences of $n, p \gg 1$:
 - ightharpoonup Convergence of performance curve as a function of sample ratio n/p.
 - ▶ Gaussian universality (GU) induced by Central Limit Theorem (e.g., $\hat{\beta} = \text{avg}(y_i \mathbf{x}_i)$).

Implication of GU: universal performance depending on the first two moments.

Implication of GU: universal performance depending on the first two moments.

Advantage: use of tools requiring data Gaussianity, e.g., CGMT, AMP, replica.

Implication of GU: universal performance depending on the first two moments.

- Advantage: use of tools requiring data Gaussianity , e.g., CGMT, AMP, replica.
- Limitation: no insight into the learning of higher order data statistics.

Implication of GU: universal performance depending on the first two moments.

- Advantage: use of tools requiring data Gaussianity, e.g., CGMT, AMP, replica.
- Limitation: no insight into the learning of higher order data statistics.

Previous results on GU of ERM: proofs of GU under the assumptions of pointwise normality $\hat{\beta}^{\mathsf{T}}\mathbf{x}$ on the ERM solution $\hat{\beta}$ [MS22; Dan+24], not verifiable from the data distribution

Implication of GU: universal performance depending on the first two moments.

- Advantage: use of tools requiring data Gaussianity, e.g., CGMT, AMP, replica.
- Limitation: no insight into the learning of higher order data statistics.

Previous results on GU of ERM: proofs of GU under the assumptions of pointwise normality $\hat{\boldsymbol{\beta}}^{\mathsf{T}}\mathbf{x}$ on the ERM solution $\hat{\boldsymbol{\beta}}$ [MS22; Dan+24], not verifiable from the data distribution.

Implication of GU: universal performance depending on the first two moments.

- Advantage: use of tools requiring data Gaussianity, e.g., CGMT, AMP, replica.
- Limitation: no insight into the learning of higher order data statistics.

Previous results on GU of ERM: proofs of GU under the assumptions of pointwise normality $\hat{\boldsymbol{\beta}}^{\mathsf{T}}\mathbf{x}$ on the ERM solution $\hat{\boldsymbol{\beta}}$ [MS22; Dan+24], not verifiable from the data distribution.

- ► Sharp performance analysis of ERM under linear factor mixture models (LFMM).
 - ► The development of leave-one-out approach to characterize performance beyond GU.

Implication of GU: universal performance depending on the first two moments.

- Advantage: use of tools requiring data Gaussianity, e.g., CGMT, AMP, replica.
- Limitation: no insight into the learning of higher order data statistics.

Previous results on GU of ERM: proofs of GU under the assumptions of pointwise normality $\hat{\boldsymbol{\beta}}^{\mathsf{T}}\mathbf{x}$ on the ERM solution $\hat{\boldsymbol{\beta}}$ [MS22; Dan+24], not verifiable from the data distribution.

- ► Sharp performance analysis of ERM under linear factor mixture models (LFMM).
 - ▶ The development of leave-one-out approach to characterize performance beyond GU.
- Condition of GU depending on LFMM. .
 - Explicit condition allowing insight into the impact of data structure.

Implication of GU: universal performance depending on the first two moments.

- Advantage: use of tools requiring data Gaussianity, e.g., CGMT, AMP, replica.
- Limitation: no insight into the learning of higher order data statistics.

Previous results on GU of ERM: proofs of GU under the assumptions of pointwise normality $\hat{\boldsymbol{\beta}}^{\mathsf{T}}\mathbf{x}$ on the ERM solution $\hat{\boldsymbol{\beta}}$ [MS22; Dan+24], not verifiable from the data distribution.

- ► Sharp performance analysis of ERM under linear factor mixture models (LFMM).
 - ▶ The development of leave-one-out approach to characterize performance beyond GU.
- Condition of GU depending on LFMM. .
 - Explicit condition allowing insight into the impact of data structure.
- Implication of GU breakdown on the optimal choice of loss.

Implication of GU: universal performance depending on the first two moments.

- Advantage: use of tools requiring data Gaussianity, e.g., CGMT, AMP, replica.
- Limitation: no insight into the learning of higher order data statistics.

Previous results on GU of ERM: proofs of GU under the assumptions of pointwise normality $\hat{\boldsymbol{\beta}}^{\mathsf{T}}\mathbf{x}$ on the ERM solution $\hat{\boldsymbol{\beta}}$ [MS22; Dan+24], not verifiable from the data distribution.

- ► Sharp performance analysis of ERM under linear factor mixture models (LFMM).
 - ▶ The development of leave-one-out approach to characterize performance beyond GU.
- Condition of GU depending on LFMM. .
 - Explicit condition allowing insight into the impact of data structure.
- Implication of GU breakdown on the optimal choice of loss.
 - Consequence: square loss no longer optimal as in GMM [TPT20; ML20].

Implication of GU: universal performance depending on the first two moments.

- Advantage: use of tools requiring data Gaussianity, e.g., CGMT, AMP, replica.
- Limitation: no insight into the learning of higher order data statistics.

Previous results on GU of ERM: proofs of GU under the assumptions of pointwise normality $\hat{\boldsymbol{\beta}}^{\mathsf{T}}\mathbf{x}$ on the ERM solution $\hat{\boldsymbol{\beta}}$ [MS22; Dan+24], not verifiable from the data distribution.

- ► Sharp performance analysis of ERM under linear factor mixture models (LFMM).
 - ▶ The development of leave-one-out approach to characterize performance beyond GU.
- Condition of GU depending on LFMM. .
 - Explicit condition allowing insight into the impact of data structure.
- Implication of GU breakdown on the optimal choice of loss.
 - Consequence: square loss no longer optimal as in GMM [TPT20; ML20].
 - ▶ Sharp results on the advantage of non-square losses in learning high-order data statistics.

Definition (Linear Factor Mixture Model (LFMM))

A data-label pair $(\mathbf{x},y)\sim\mathcal{D}_{(\mathbf{x},y)}$ with class label $y\in\{\pm 1\}$ is said to follow a linear factor mixture model if $\mathbf{x}\in\mathbb{R}^p$ is the linear combination of p factors z_1,\ldots,z_p

$$\mathbf{x} = \sum_{k=1}^{p} z_k \mathbf{v}_k = \sum_{k=1}^{p} (y s_k + e_k) \mathbf{v}_k, \tag{1}$$

for linearly independent deterministic $\mathbf{v}_1,\dots,\mathbf{v}_p\in\mathbb{R}^p$ and standardized noises $e_1,\dots,e_p\in\mathbb{R}$ independent of y with bounded fourth moments.

ightharpoonup q informative factors z_1, \ldots, z_q with deterministic signals $s_k > 0$, $k \in \{1, \ldots, q\}$;

Definition (Linear Factor Mixture Model (LFMM))

A data-label pair $(\mathbf{x},y)\sim\mathcal{D}_{(\mathbf{x},y)}$ with class label $y\in\{\pm 1\}$ is said to follow a linear factor mixture model if $\mathbf{x}\in\mathbb{R}^p$ is the linear combination of p factors z_1,\ldots,z_p

$$\mathbf{x} = \sum_{k=1}^{p} z_k \mathbf{v}_k = \sum_{k=1}^{p} (y s_k + e_k) \mathbf{v}_k, \tag{1}$$

for linearly independent deterministic $\mathbf{v}_1,\ldots,\mathbf{v}_p\in\mathbb{R}^p$ and standardized noises $e_1,\ldots,e_p\in\mathbb{R}$ independent of y with bounded fourth moments.

- ightharpoonup q informative factors z_1,\ldots,z_q with deterministic signals $s_k>0,\ k\in\{1,\ldots,q\};$
- ightharpoonup p-q noise factors z_{q+1},\ldots,z_p with $s_k=0,\ k\in\{q+1,\ldots,p\}$.

Definition (Linear Factor Mixture Model (LFMM))

A data-label pair $(\mathbf{x},y)\sim\mathcal{D}_{(\mathbf{x},y)}$ with class label $y\in\{\pm 1\}$ is said to follow a linear factor mixture model if $\mathbf{x}\in\mathbb{R}^p$ is the linear combination of p factors z_1,\ldots,z_p

$$\mathbf{x} = \sum_{k=1}^{p} z_k \mathbf{v}_k = \sum_{k=1}^{p} (y s_k + e_k) \mathbf{v}_k, \tag{1}$$

for linearly independent deterministic $\mathbf{v}_1,\ldots,\mathbf{v}_p\in\mathbb{R}^p$ and standardized noises $e_1,\ldots,e_p\in\mathbb{R}$ independent of y with bounded fourth moments.

- ightharpoonup q informative factors z_1, \ldots, z_q with deterministic signals $s_k > 0$, $k \in \{1, \ldots, q\}$;
- ightharpoonup p-q noise factors z_{q+1},\ldots,z_p with $s_k=0,\,k\in\{q+1,\ldots,p\}.$
- $ightharpoonup \operatorname{Span}\{\mathbf{v}_1,\ldots,\mathbf{v}_q\}$ orthogonal to $\operatorname{Span}\{\mathbf{v}_{q+1},\ldots,\mathbf{v}_p\}$

Definition (Linear Factor Mixture Model (LFMM))

A data-label pair $(\mathbf{x},y) \sim \mathcal{D}_{(\mathbf{x},y)}$ with class label $y \in \{\pm 1\}$ is said to follow a linear factor mixture model if $\mathbf{x} \in \mathbb{R}^p$ is the linear combination of p factors z_1,\ldots,z_p

$$\mathbf{x} = \sum_{k=1}^{p} z_k \mathbf{v}_k = \sum_{k=1}^{p} (y s_k + e_k) \mathbf{v}_k, \tag{1}$$

for linearly independent deterministic $\mathbf{v}_1,\ldots,\mathbf{v}_p\in\mathbb{R}^p$ and standardized noises $e_1,\ldots,e_p\in\mathbb{R}$ independent of y with bounded fourth moments.

- ightharpoonup q informative factors z_1,\ldots,z_q with deterministic signals $s_k>0,\ k\in\{1,\ldots,q\};$
- ▶ p-q noise factors z_{q+1}, \ldots, z_p with $s_k = 0$, $k \in \{q+1, \ldots, p\}$.
- ightharpoonup Span $\{\mathbf{v}_1,\ldots,\mathbf{v}_q\}$ orthogonal to $\mathrm{Span}\{\mathbf{v}_{q+1},\ldots,\mathbf{v}_p\}$
- class-conditional means and covariances of x:

$$\mathbb{E}[\mathbf{x}|y] = y\boldsymbol{\mu}, \quad \text{Cov}[\mathbf{x}|y] = \boldsymbol{\Sigma}$$
 (2)

with
$$\mu = \sum_{k=1}^p s_k \mathbf{v}_k$$
 and $\mathbf{\Sigma} = \sum_{k=1}^p \mathbf{v}_k \mathbf{v}_k^\mathsf{T}$.

Sharp Performance under LFMM

Theorem (Asymptotic distribution of predicted scores under LFMM)

For ERM classifier $\hat{\beta}$ obtained on $\{(\mathbf{x}_i,y_i)\}_{i=1}^n$ of size n drawn i.i.d. from an LFMM, we have that, for any bounded Lipschitz function $f\colon\mathbb{R}\to\mathbb{R}$,

Testing score:
$$\left[\mathbb{E}\left[f(\hat{\boldsymbol{\beta}}^{\mathsf{T}}\boldsymbol{\nu})\right] - \mathbb{E}\left[f(\hat{\boldsymbol{\beta}}^{\mathsf{T}}\boldsymbol{\nu})\right] \to 0\right], \quad \forall \ \textit{deterministic} \ \boldsymbol{\nu} \in \mathbb{R}^p$$

$$\textit{Training score:} \quad \boxed{\mathbb{E}[f(\hat{\boldsymbol{\beta}}^\mathsf{T}\mathbf{x}_i)] - \mathbb{E}[f(\mathrm{prox}_{\kappa,\ell(\cdot,y_i)}(\tilde{\boldsymbol{\beta}}^\mathsf{T}\mathbf{x}_i))] \to 0}, \quad \forall i \in \{1,\dots,n\},$$

where

$$\tilde{\boldsymbol{\beta}} = (\lambda \mathbf{I}_p + \theta \boldsymbol{\Sigma})^{-1} \left(\eta \mu + \sum_{k=1}^{q} \omega_k \mathbf{v}_k + \gamma \boldsymbol{\Sigma}^{\frac{1}{2}} \mathbf{u} \right), \tag{3}$$

for Gaussian vector $\mathbf{u} \sim \mathcal{N}(\mathbf{0}_p, \mathbf{I}_p/n)$ independent of $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ and constants $\theta, \eta, \gamma, \omega_1, \ldots, \omega_q$ determined by a (known) self-consistent system of equations

$$[\theta, \eta, \gamma, \omega_1, \dots, \omega_q] = G_{\ell, \lambda, n/p, \mu, \Sigma, \mathbf{v}_1, \dots, \mathbf{v}_q, \mathcal{D}_{(z_1, \dots, z_q)}}([\theta, \eta, \gamma, \omega_1, \dots, \omega_q]).$$

Definition of Gaussian Universality

Definition (Equivalent Gaussian mixture model (Equivalent GMM))

For an LFMM $\mathcal{D}_{(\mathbf{x},y)}$, we define its equivalent Gaussian mixture model $\mathcal{D}_{(\mathbf{g},y)}$ as the GMM with the same class-conditional means μ and covariances Σ as the LFMM in (2):

$$\mathbf{g} \sim \mathcal{N}(y\boldsymbol{\mu}, \boldsymbol{\Sigma}).$$
 (4)

We denote $\hat{\beta}^{\mathbf{g}}$ the ERM solution obtained on n i.i.d. $(\mathbf{g}_1,y_1),\ldots,(\mathbf{g}_n,y_n)\sim\mathcal{D}_{(\mathbf{g},y)}.$

Definition of Gaussian Universality

Definition (Equivalent Gaussian mixture model (Equivalent GMM))

For an LFMM $\mathcal{D}_{(\mathbf{x},y)}$, we define its equivalent Gaussian mixture model $\mathcal{D}_{(\mathbf{g},y)}$ as the GMM with the same class-conditional means μ and covariances Σ as the LFMM in (2):

$$\mathbf{g} \sim \mathcal{N}(y\boldsymbol{\mu}, \boldsymbol{\Sigma}).$$
 (4)

We denote $\hat{\beta}^{\mathbf{g}}$ the ERM solution obtained on n i.i.d. $(\mathbf{g}_1,y_1),\ldots,(\mathbf{g}_n,y_n)\sim\mathcal{D}_{(\mathbf{g},y)}.$

Definition (Gaussian universality under LFMM)

For an ERM solution $\hat{\beta}$ on LFMM $\mathcal{D}_{(\mathbf{x},y)}$ and $\hat{\beta}^{\mathbf{g}}$ on the equivalent GMM, we say Gaussian universality holds if

$$Pr(y_i \mathbf{x}_i^\mathsf{T} \hat{\boldsymbol{\beta}} > 0) \simeq Pr(y_i \mathbf{g}_i^\mathsf{T} \hat{\boldsymbol{\beta}}^\mathsf{g} > 0)$$
$$Pr(y' \mathbf{x}'^\mathsf{T} \hat{\boldsymbol{\beta}} > 0) \simeq Pr(y' \mathbf{g}'^\mathsf{T} \hat{\boldsymbol{\beta}}^\mathsf{g} > 0)$$

for $(\mathbf{x}',y') \sim \mathcal{D}_{(\mathbf{x},y)}$ independent of $\{(\mathbf{x}_i,y_i)\}_{i=1}^n$, and $(\mathbf{g}',y') \sim \mathcal{D}_{(\mathbf{g},y)}$ independent of $\{(\mathbf{g}_i,y_i)\}_{i=1}^n$

Conditional Gaussian universality under LFMM

Conditional Gaussian universality under LFMM

Corollary (Conditional Gaussian universality under LFMM)

Uner LFMM, the Gaussian universality of ERM holds if and only if the informative factors z_1, \ldots, z_q of LFMM are class-conditional Gaussian.

Conditional Gaussian universality under LFMM

Corollary (Conditional Gaussian universality under LFMM)

Uner LFMM, the Gaussian universality of ERM holds if and only if the informative factors z_1, \ldots, z_q of LFMM are class-conditional Gaussian.

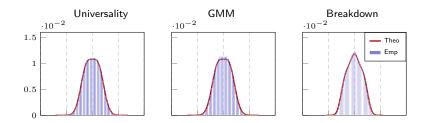


Figure: Theoretical and empirical distribution of predicted scores $\hat{\boldsymbol{\beta}}^\mathsf{T}\mathbf{x}'$ for some fresh test data $(\mathbf{x}',y')\sim\mathcal{D}_{(\mathbf{x},y)}$ independent of $\hat{\boldsymbol{\beta}}$. The theoretical probability densities (**red**), and the empirical histograms (**blue**) are the values of $\hat{\boldsymbol{\beta}}^\mathsf{T}\mathbf{x}'$ over 10^6 independent copies of \mathbf{x}' , for three different LFMMs with n=600, p=200, $\rho=0.5$, $s=[\sqrt{2};\mathbf{0}_{p-1}]$ (so that q=1), and Haar distributed \mathbf{V} . Left: normal e_1 and uniformly distributed e_2,\ldots,e_p ; **Middle**: normal e_1,\ldots,e_p ; **Right**: uniformly distributed e_1 , and normal e_2,\ldots,e_p .

Performance under Gaussian Universality Breakdown

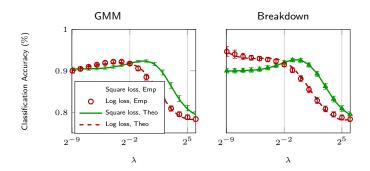


Figure: Empirical classification accuracy of $\hat{\mathbf{w}}_{\ell,\lambda}$ averaged over 100 trials with a width of ± 1 standard deviation, versus theoretical curve given by the square loss and the logistic loss on n=800 training samples. Left: GMM under with p=200, $\rho=0.5$, $s=[1,5;0.5;\mathbf{0}_{p-2}]$ (so that q=2), and $\mathbf{V}=\mathrm{diag}(2,1_{p-1})\mathbf{H}$ with Haar distributed $\mathbf{H}.$ Right: LFMM identical to the GMM in the left, but with Rademacher e_1 .

Performance under Gaussian Universality Breakdown

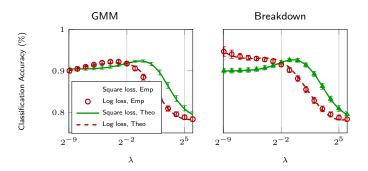
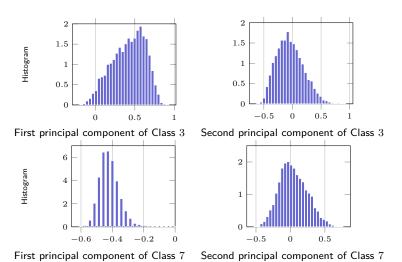


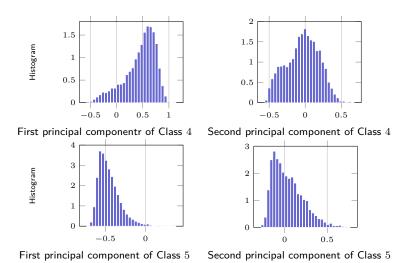
Figure: Empirical classification accuracy of $\hat{\mathbf{w}}_{\ell,\lambda}$ averaged over 100 trials with a width of ± 1 standard deviation, versus theoretical curve given by the square loss and the logistic loss on n=800 training samples. Left: GMM under with p=200, $\rho=0.5$, $s=[1,5;0.5;0_{p-2}]$ (so that q=2), and $\mathbf{V}=\mathrm{diag}(2,\mathbf{1}_{p-1})\mathbf{H}$ with Haar distributed $\mathbf{H}.$ Right: LFMM identical to the GMM in the left, but with Rademacher e_1 .

Remark: under LFMM, the square loss is no longer optima as in GMM [TPT20; ML20].

Case 1: Classes 3&7 of Fashion-MNIST data, for which approximately Gaussian informative factors (estimated by the principal components in PCA) can be observed.



Case 2: Classes 4&5 of Fashion-MNIST data, as an example of *non-Gaussian* informative factors (estimated by the principal components in PCA).



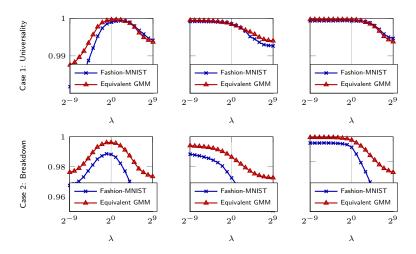


Figure: Classification accuracies as a function of the regularization penalty γ , for Fashion-MNIST data and Equivalent GMM of sample size n=512, with square (left), logistic (middle), and square hinge (right) losses.

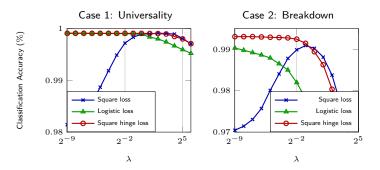


Figure: Classification accuracies as a function of the regularization penalty, for square, logistic, and square hinge loss, on Fashion-MNIST data of sample size n=512. Left: Class 3 versus 7, as an example of (close-to) Gaussian information factors. Right: Class 4 versus 5, as an example of non-Gaussian information factors.

Previous proofs of GU in ERM [MS22; Dan+24] required assumptions on the unknown statistical behaviour of $\hat{\beta}$, not verifiable from the data distribution.

- ▶ Previous proofs of GU in ERM [MS22; Dan+24] required assumptions on the unknown statistical behaviour of $\hat{\beta}$, not verifiable from the data distribution.
- Our results demonstrate a breakdown of GU in ERM conditioned on the data structure: under LFMM, GU only holds in the case of class-conditional Gaussian informative factors.

- Previous proofs of GU in ERM [MS22; Dan+24] required assumptions on the unknown statistical behaviour of $\hat{\beta}$, not verifiable from the data distribution.
- Our results demonstrate a breakdown of GU in ERM conditioned on the data structure: under LFMM, GU only holds in the case of class-conditional Gaussian informative factors.
- Our sharp performance analysis provides insight into the advantages of non-square losses in learning higher order data statistics under the GU breakdown.

- ▶ Previous proofs of GU in ERM [MS22; Dan+24] required assumptions on the unknown statistical behaviour of $\hat{\beta}$, not verifiable from the data distribution.
- Our results demonstrate a breakdown of GU in ERM conditioned on the data structure: under LFMM, GU only holds in the case of class-conditional Gaussian informative factors.
- Our sharp performance analysis provides insight into the advantages of non-square losses in learning higher order data statistics under the GU breakdown.
- Our results help predict GU on real-word data from the distributions of their principal components.

- Previous proofs of GU in ERM [MS22; Dan+24] required assumptions on the unknown statistical behaviour of β̂, not verifiable from the data distribution.
- Our results demonstrate a breakdown of GU in ERM conditioned on the data structure: under LFMM, GU only holds in the case of class-conditional Gaussian informative factors.
- Our sharp performance analysis provides insight into the advantages of non-square losses in learning higher order data statistics under the GU breakdown.
- Our results help predict GU on real-word data from the distributions of their principal components.

Our Poster Session: Thu 24 Apr 10 a.m. SGT – 12:30 p.m. SGT.

References

[ML20]

[MS22] Andrea Montanari and Basil N Saeed. "Universality of empirical risk minimization". In: Conference on Learning Theory. PMLR. 2022, pp. 4310–4312.
[Dan+24] Yatin Dandi, Ludovic Stephan, Florent Krzakala, Bruno Loureiro, and Lenka Zdeborová. "Universality laws for gaussian mixtures in generalized linear models". In: Advances in Neural Information Processing Systems 36 (2024).
[ML25] Xiaoyi Mai and Zhenyu Liao. "The Breakdown of Gaussian Universality in Classification of High-dimensional Mixtures". In: (accepted) 2025 International Conference on Learning Representations (ICLR). 2025.
[TPT20] Hossein Taheri, Ramtin Pedarsani, and Christos Thrampoulidis. "Optimality of Least-squares for Classification in Gaussian-Mixture Models". In: 2020 IEEE

International Symposium on Information Theory (ISIT) 00 (2020), pp. 2515–2520.

Xiaoyi Mai and Zhenyu Liao. High Dimensional Classification via Regularized and Unregularized Empirical Risk Minimization: Precise Error and Optimal Loss. Nov.

[Bea+13] Derek Bean, Peter J Bickel, Noureddine El Karoui, and Bin Yu. "Optimal M-estimation in high-dimensional regression". In: Proceedings of the National Academy of Sciences 110.36 (2013), pp. 14563–14568.

2020. arXiv: 1905.13742 [stat].