STRONG PREFERENCES AFFECT THE ROBUSTNESS OF PREFERENCE MODELS AND VALUE ALIGNMENT

Artificial Intelligence Institute

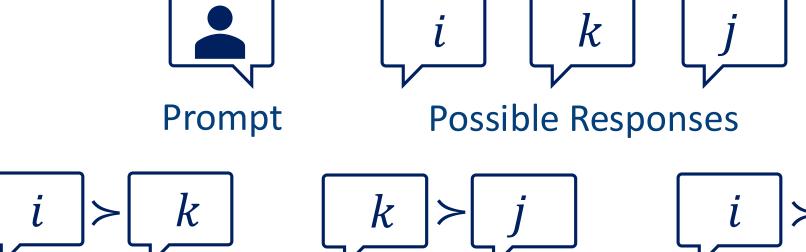
Mohan Kankanhalli Ziwei Xu

TL; DR

- We study the robustness of value alignment by analyzing the sensitivity of preference models, a core component of value alignment.
- We show that under the Plackett-Luce model, preference probabilities can change significantly due to small changes in the learned preference distribution.
- We characterize this sensitivity: it occurs with strong preferences with probabilities close to 0 and 1.

Introduction

We cannot Specify all the Preferences

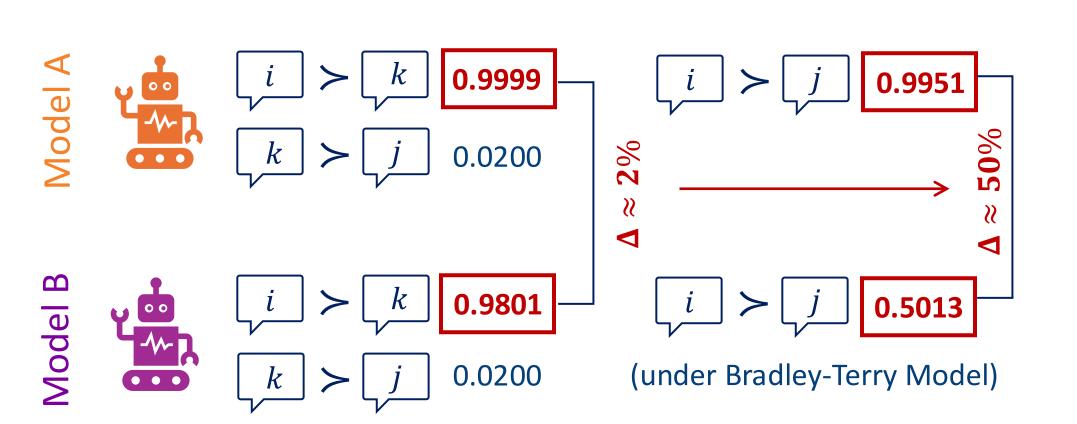


Specified in Training Samples

 $p_{ik} = 0.9900$

 $p_{kj} = 0.2000$ $p_{ij} = ????$ Unspecified

Models could Learn Slightly Different Preferences



Question We Ask

How sensitive a preference probability is with respect to changes in other preference probabilities?

Assumptions for Pairwise Preference Models

Asm 1: Preference probabilities only depend on score differences $p_{ij} = p(y_i > y_j) = g(s_i - s_j), g \in \mathbb{R} \to (0,1)$

Asm 2: g(x) is strictly increasing $\Leftrightarrow (s_i - s_i \uparrow \Leftrightarrow p_{ij} \uparrow)$

Asm 3: $\lim_{x \to -\infty} g(x) = 0$, $\lim_{x \to +\infty} g(x) = 1$

Asm 4: $\forall x \in \mathbb{R}$, $g(x) + g(-x) = 1 \Leftrightarrow p_{ij} + p_{ji} = 1$

Asm 5: g(x) is continuously differentiable

Special case: Bradley-Terry model $g_{BT}(x) = \frac{1}{1 + \exp(-x)}$

Analysis

Measuring Sensitivity

Consider a multivariable function $h(x) = h(x_1, x_2, ..., x_L)$.

- *M*-sensitivity: h(x) is *M*-sensitive to x_i at x' if $\left|\frac{\partial h}{\partial x_i}\right|_{x=x'} > M$.
- *M*-sensitivity region of $h: \Omega_{\mathbf{M}}(h, x_i): \left\{ \mathbf{x}' \in \mathrm{Dom}(h): \left| \frac{\partial h}{\partial x_i} \right|_{\mathbf{x} = \mathbf{x}'} \right| > M \right\}.$

Analysis for Pairwise Preference Models

Lemma 1 The unspecified p_{ij} is a function of p_{ik} and p_{kj} :

$$p_{ij} = g(s_i - s_j) = g(s_i - s_k + s_k - s_j) = g(g^{-1}(p_{ik}) + g^{-1}(p_{kj})) = p_{ij}(p_{ik}, p_{kj})$$

Theorem 1 For all M > 0, there exists $0 < p_0, p'_{ki} < 1$, such that $p_{ij}(p_{ik}, p'_{ki})$ is Msensitive to p_{ik} for all $p_0 < p_{ik} < 1$. Similarly, there exists $0 < p_1$, $p_{ki}^{\prime\prime} < 1$, such that $p_{ij}(p_{ik},p_{kj}^{\prime\prime})$ is M-sensitive to p_{ik} for all $0 < p_{ik} < p_1$.

• p_{ij} can be arbitrarily sensitive to p_{ik} when p_{ik} (and p_{kj}) are close to 0 or 1.

Characterizing Sensitivity for the Bradley-Terry (B-T) Model

When is B-T model sensitive? $-0 < p_{ik}^{BT} < \gamma_0, 1 - \frac{1}{1+M} < p_{kj}^{BT} < 1$ $-\gamma_0 < p_{ik}^{BT} < 1, 0 < p_{kj}^{BT} < \frac{1}{1+M}$ $A\left(\Omega_{\rm M}(p_{ij}^{BT},p_{ik}^{\rm BT})\right) = \frac{1}{2}\ln\frac{M-1}{M+1} + \frac{1}{2\sqrt{M}}\ln\frac{\sqrt{M}+1}{\sqrt{M}-1}$

Back to the example:

 $(p_{ik}^A, p_{kj}^A) = (0.9999, 0.0200) \in \Omega_{48}(p_{ij}^{BT}, p_{ik}^{BT}) \quad (p_{ik}^B, p_{kj}^B) = (0.9801, 0.0200) \in \Omega_{12}(p_{ij}^{BT}, p_{ik}^{BT})$

Extension to the Plackett-Luce Model

Let $\mathcal{O} = \{o_1, o_2, ..., o_K\}$ be the set of all the options. Let $\boldsymbol{\omega} = (o_{\omega_1}, o_{\omega_2}, ..., o_{\omega_K}) \in$ $Perm(\mathcal{O})$ be a preference over the options. Under the Plackett-Luce Model:

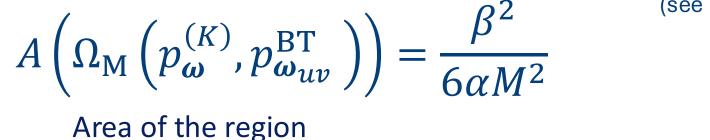
Lemma 5 Let ω be a K-tuple preference. Then $p_{\omega}^{(K)}$, under the Plackett-Luce Model, can be written as a function of $p_{\omega_{uv}}^{(K)}/p_{\omega_{vv}}^{(K)}$, where $1 \le u, v \le K$, $\omega_{uv} = (\omega'_{uv}; \omega_u, \omega_v)$ and $\boldsymbol{\omega}_{vu} = (\boldsymbol{\omega}'_{uv}; \omega_v, \omega_u)$, and $\boldsymbol{\omega}'_{uv}$ is any (K-2)-permutation of $\mathcal{O}\setminus\{\omega_u, \omega_v\}$:

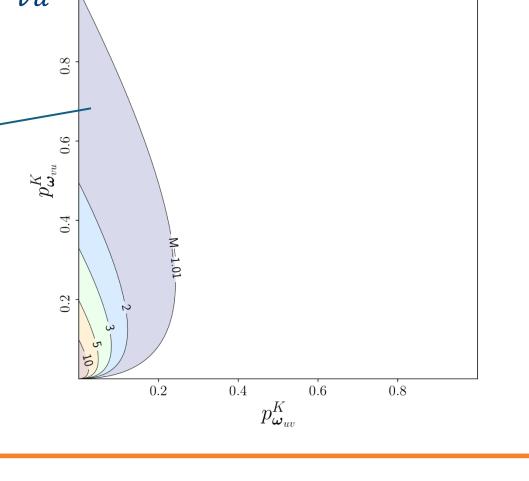
$$p_{\omega}^{(K)} = \prod_{u=1}^{K-1} \frac{1}{1 + \sum_{v=u+1}^{K} p_{\omega_{uv}}^{(K)} / p_{\omega_{vv}}^{(K)}}$$

When is P-L model sensitive?

$$0 < p_{\omega_{uv}}^{(K)} < \frac{\beta}{4\alpha M}, \gamma_1 - \gamma_2 < p_{\omega_{vu}}^{(K)} < \gamma_1 + \gamma_2$$

lpha, eta are some constants γ_1 , γ_2 are functions of $\left(M,p_{m{\omega}_{uv}}^{(K)}
ight)$





Comparing B-T and P-L Models

Theorem 2 For all M > 1 and K > 2:

$$A\left(\Omega_{\mathrm{M}}\left(p_{ij}^{\mathrm{BT}}, p_{ik}^{\mathrm{BT}}\right)\right) > A\left(\Omega_{\mathrm{M}}\left(p_{\boldsymbol{\omega}}^{(K)}, p_{\boldsymbol{\omega}uv}^{\mathrm{BT}}\right)\right)$$

Takeaways

- Preference models with similar behaviors on the training set may assign significantly different probabilities to unseen preferences.
- Minor changes in the data distributions within the training set may lead to significant changes in the learned preference models.
- P-L models (with K > 2) are more robust than B-T model.
- Not just for value alignment, but wherever PM is used (e.g., Chatbot Arena)

Experiments

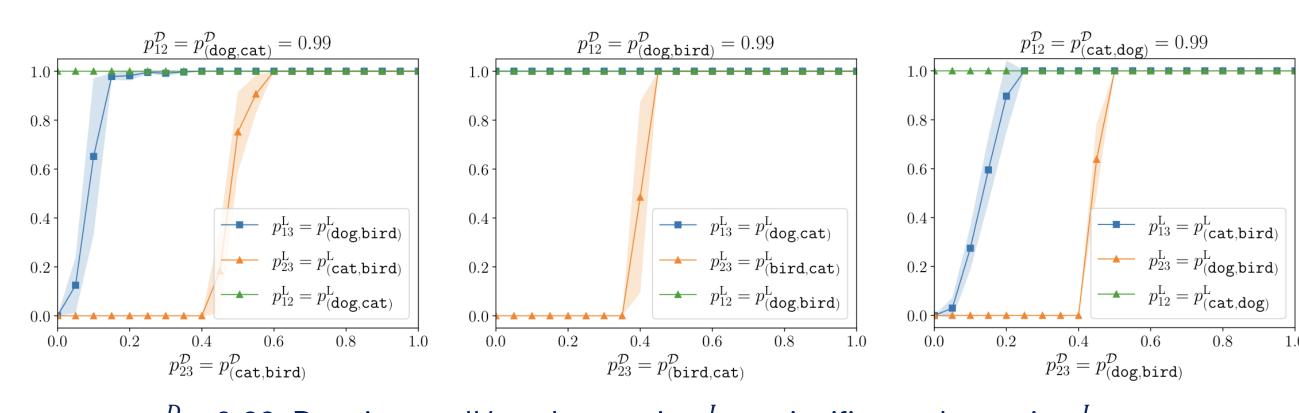
Strong Preferences are not Uncommon

Frequencies of preference probabilities assigned by reward models on Anthropic/hh-rlhf

p_{wl}	Frequency of p_{wl}	
	Llama-3.1-Nemotron-70B-Reward-HF	reward-model-deberta-v3-large-v2
(0.00, 0.05)	1,184	22
(0.05, 0.10)	363	62
[0.10, 0.90)	3,636	7037
[0.90, 0.99)	1,574	1,264
[0.99, 1.00)	1,795	167
Total	8,552	

Sensitivities of Preference Models Manifest in Value Alignment

- Synthetic dataset: $\mathcal{O} = \{ \text{dog, cat, bird} \}$ three preferences
- Set p_{12}^D to be 0.99 or 0.5 $rac{1}{2}$ strong or moderate preferences
- Vary p_{23}^D from 0 to 1, resulting in changes in DPO-learned p_{23}^L
- Check the learned p_{13}^L , does it change proportionally to p_{23}^L ?
- Studies LLMs: Llama-3-8B-Instruct, zephyr-7b-alpha



 p_{12}^D =0.99: Despite small/no changes in p_{23}^L , a significant change in p_{13}^L occurs.

