BOFormer: Learning to Solve Multi-Objective Bayesian Optimization via Non-Markovian RL

Yu-Heng Hung

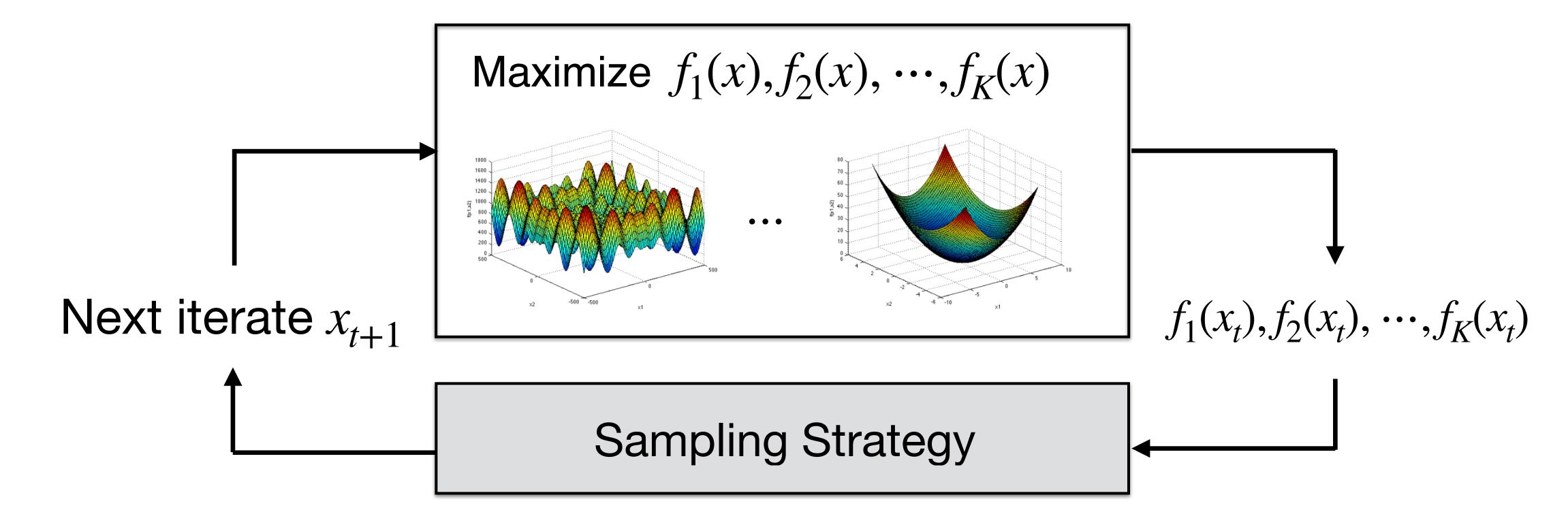
Department of Computer Science

National Yang Ming Chiao Tung University (NYCU)

Joint work with Kai-Jie Lin (NYCU), Yu-Heng Lin (NYCU), Ping-Chun Hsieh (NYCU), Cheng Sun (NVIDIA) and Chien-Yi Wang (NVIDIA)

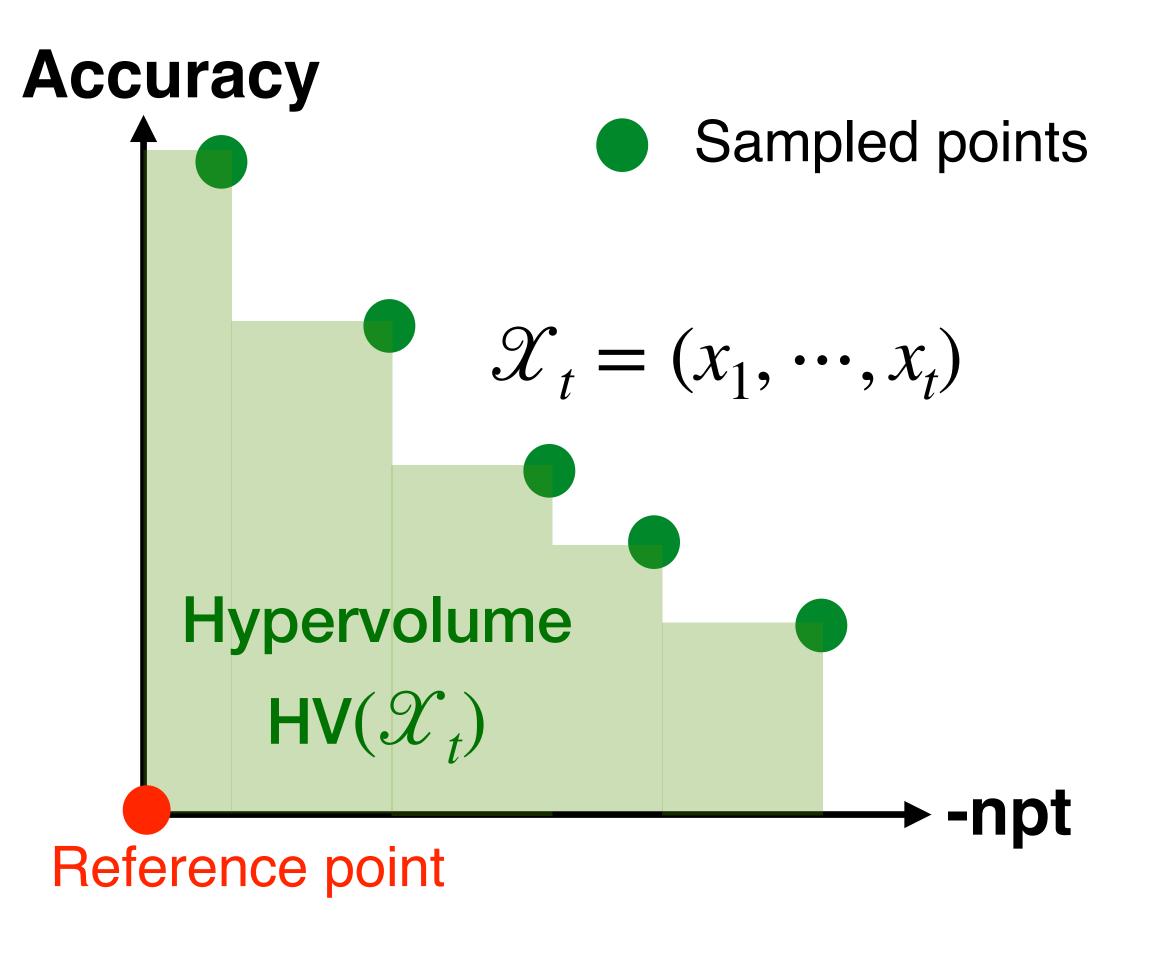
Email: hungyh.cs08@nycu.edu.tw

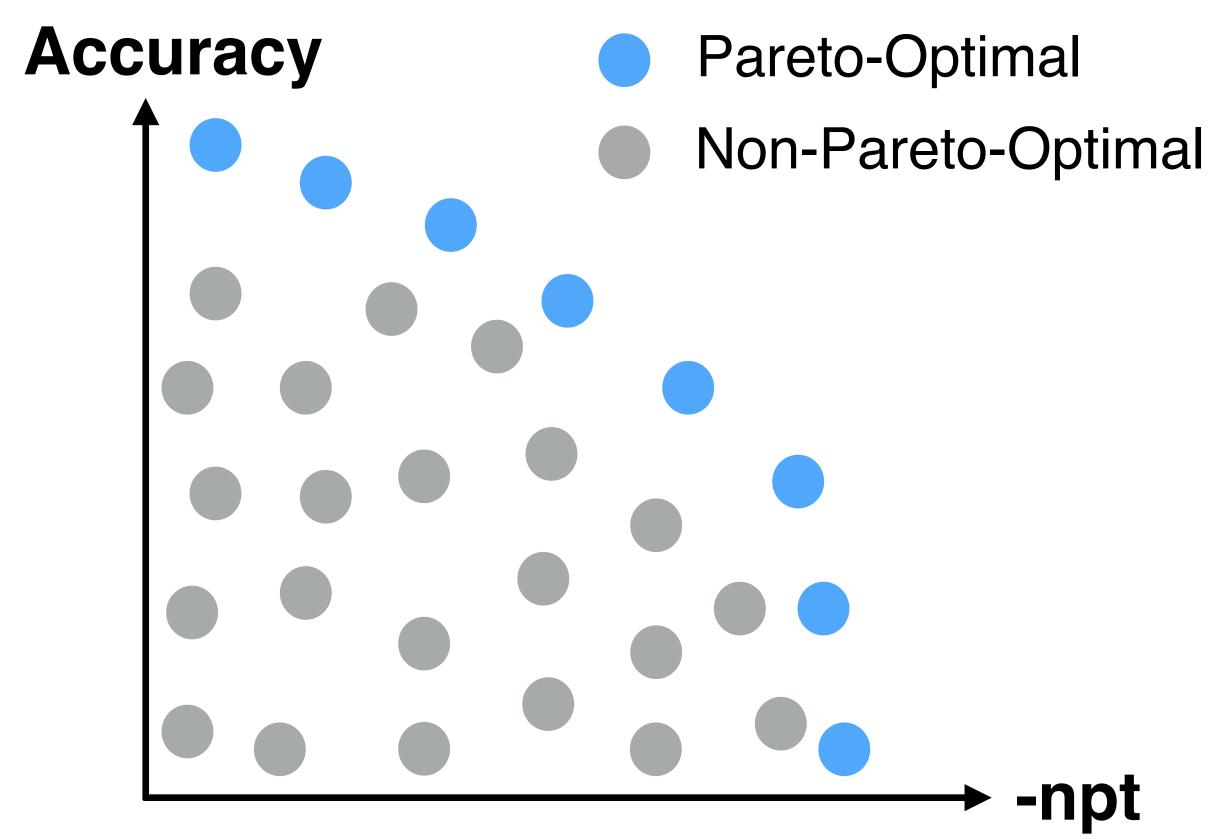
Black-Box Optimization



- $f_1(x), f_2(x), \dots, f_K(x)$ can be accessed only by sequential sampling
- No gradient information available
- Sampling is usually assumed expensive or time-consuming

Multi-Objective Optimization: Hypervolume





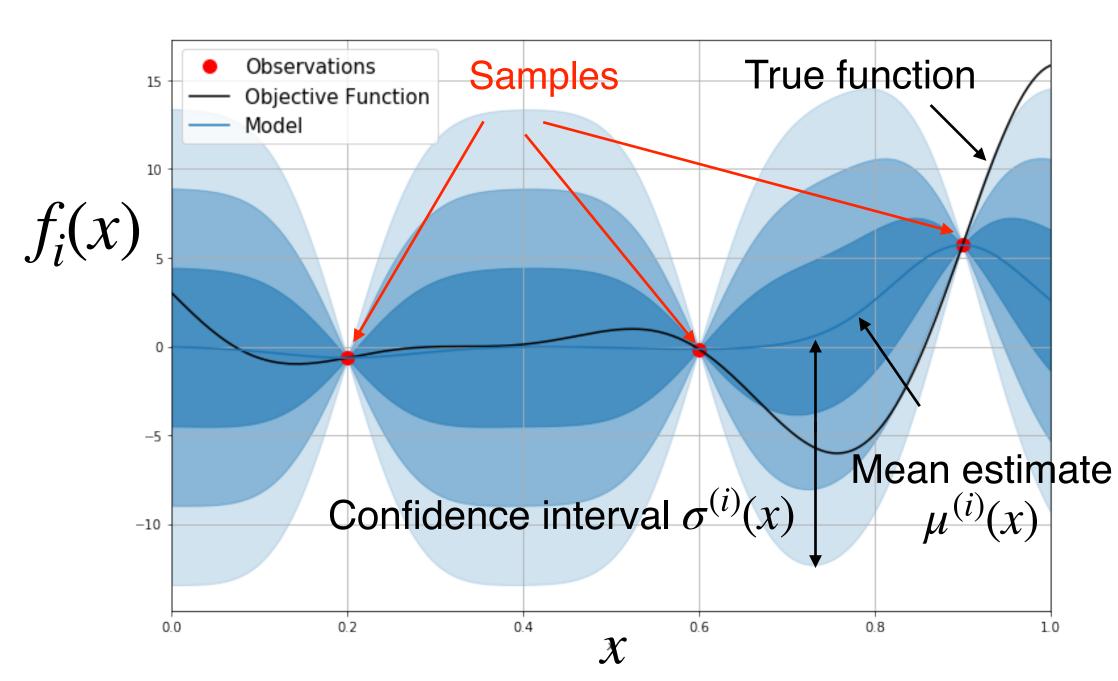
(Each point denotes the attained 2 objectives of a chosen capacitor value)

Find all Pareto-optimal points \equiv Maximize hypervolume

Multi-Objective Bayesian Optimization (MOBO)

1. Gaussian process prior

• The posterior enjoys a closed form by posterior mean and variance $(\mu_t^{(i)}(x), \sigma_t^{(i)}(x)^2)_{i \in [K]}$



2. Acquisition function

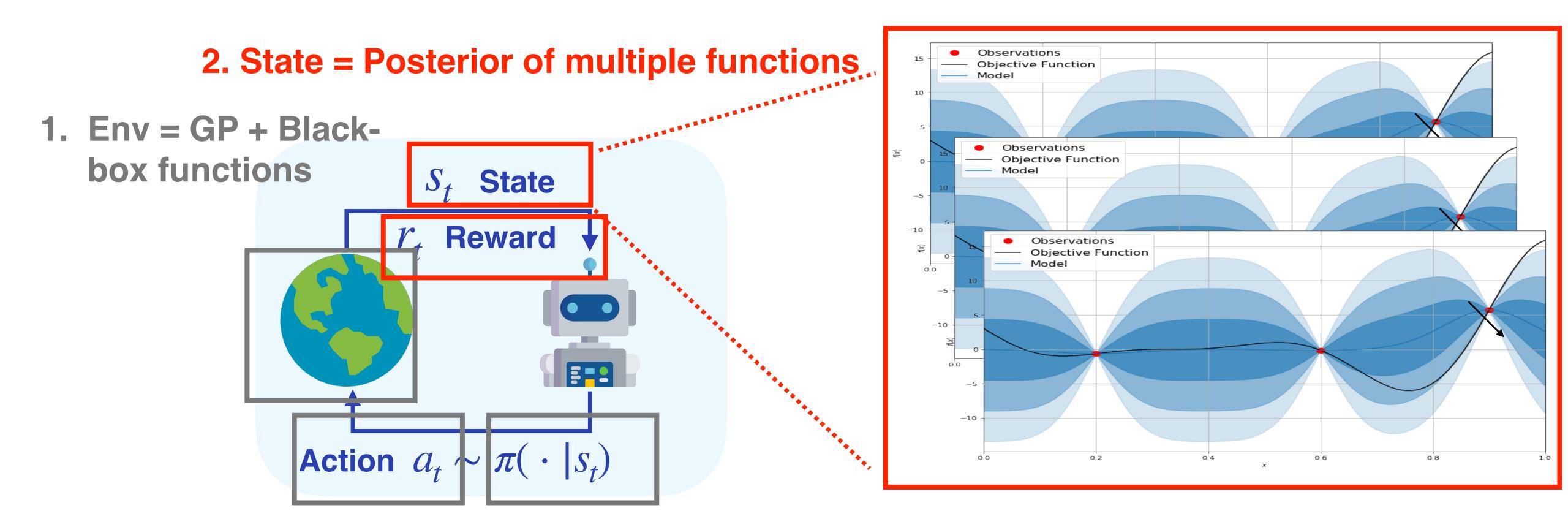
• Determines the next sample by an acquisition function (AF)

• At each t, AF computes $I_t(x)$ from $\{\mu_t^{(i)}(x), \sigma_t^{(i)}(x)^2\}$ and select

$$x_{t+1} = \underset{x}{\operatorname{arg max}} I_t(x)$$

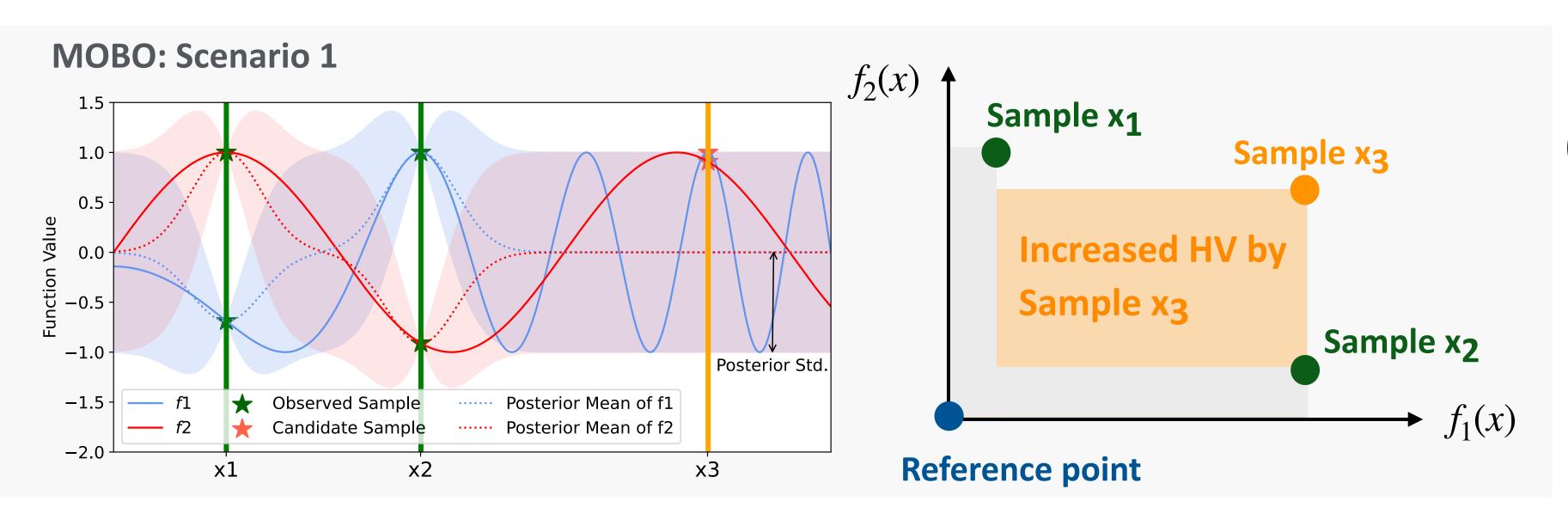
• Such AFs are domain-agnostic

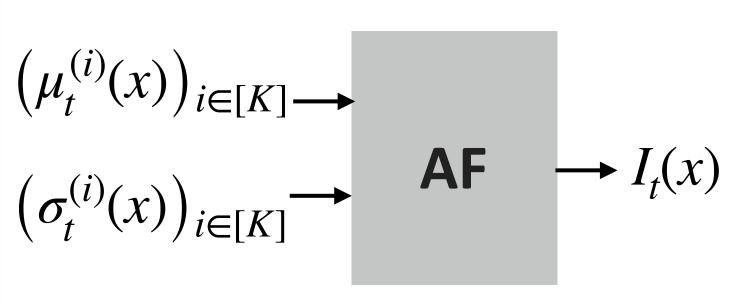
MOBO can also be Interpreted as an RL Problem

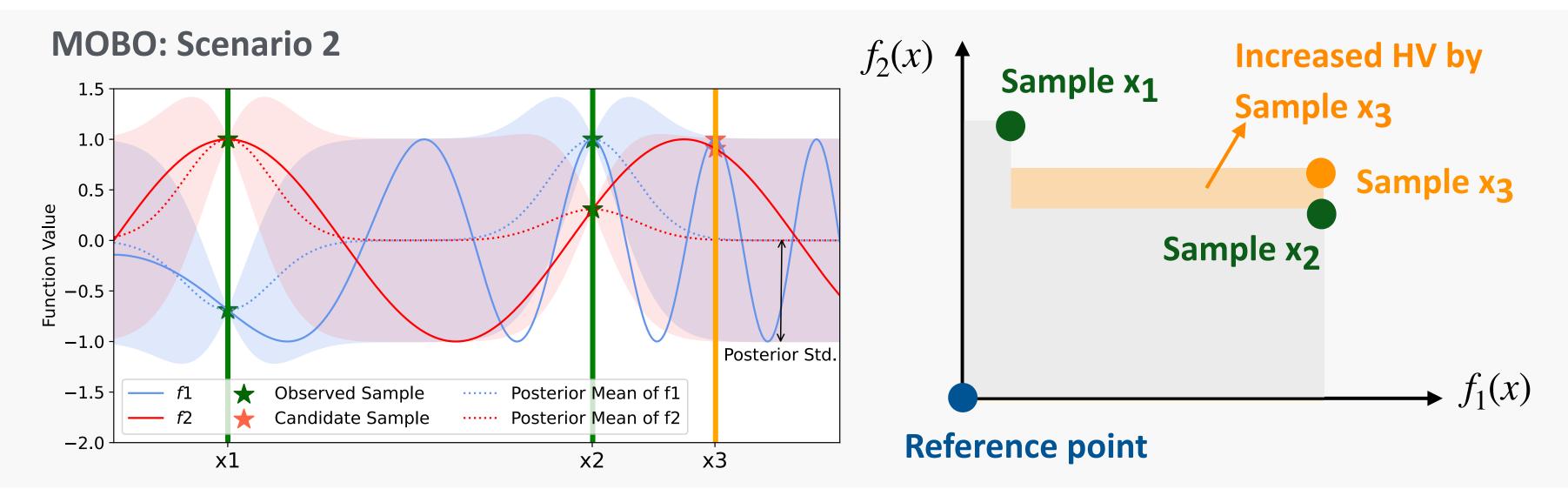


- 3. Action = next sample point 4. Policy determined by AF
- 5. Reward could be a function of "hypervolume"

Hypervolume Identifiability Problem





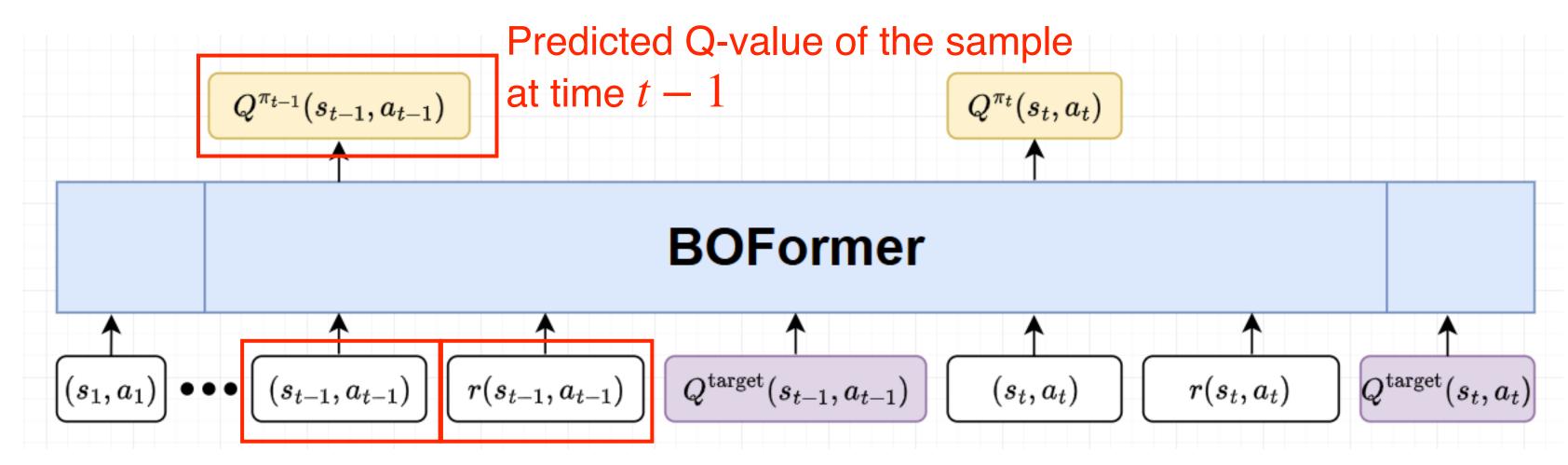


Upon sampling x_3 :

- Same posterior for both scenarios
- Large difference in increased HV

BOFormer: Sequential Modeling + Non-Markovian RL

- Main idea #1: Use a Transformer to capture sampling history
- Main idea #2: Use Non-Markovian DQN to learn a Q-Function as AF

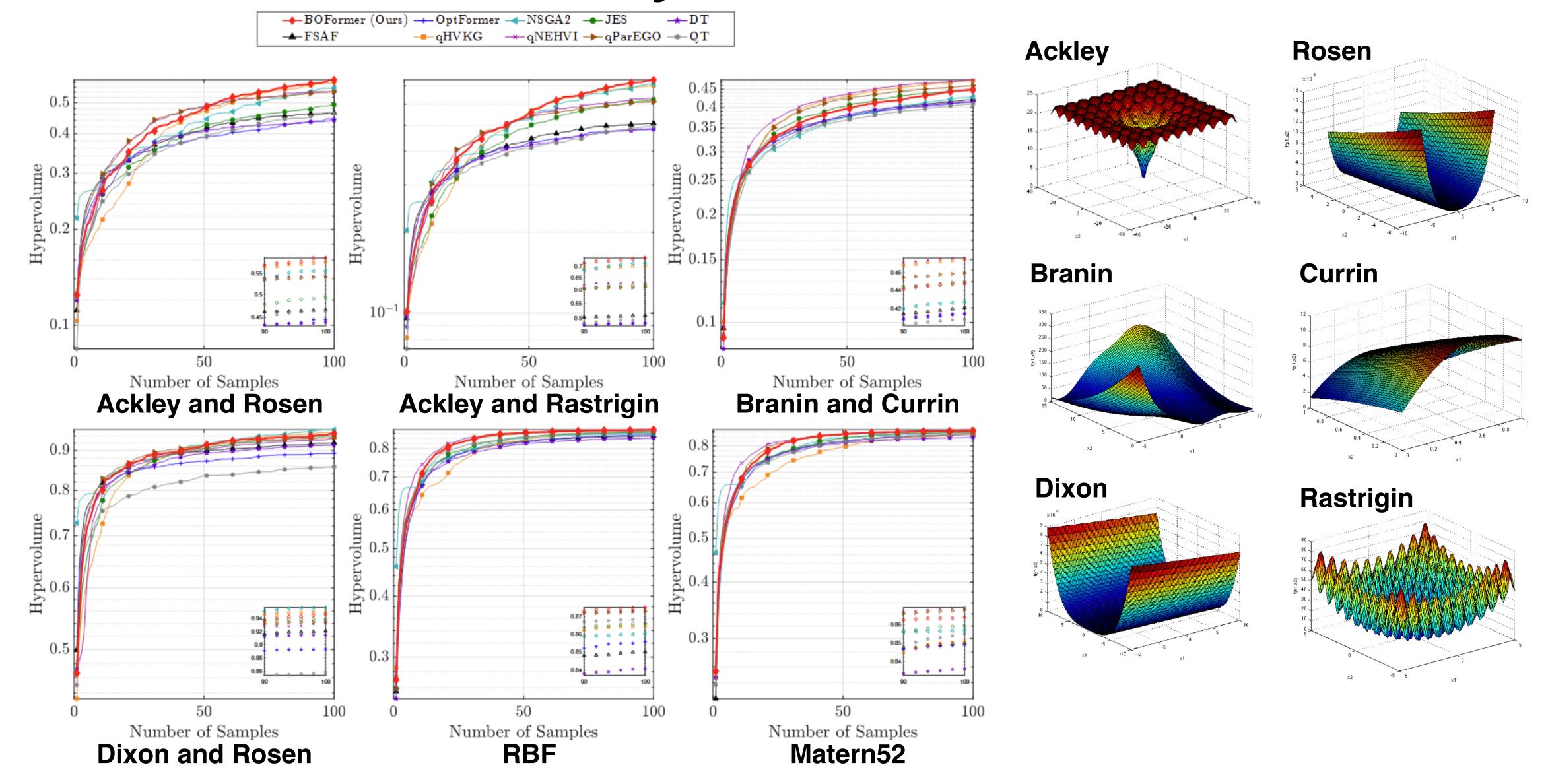


Joint state-action representation of the sample at time t-1

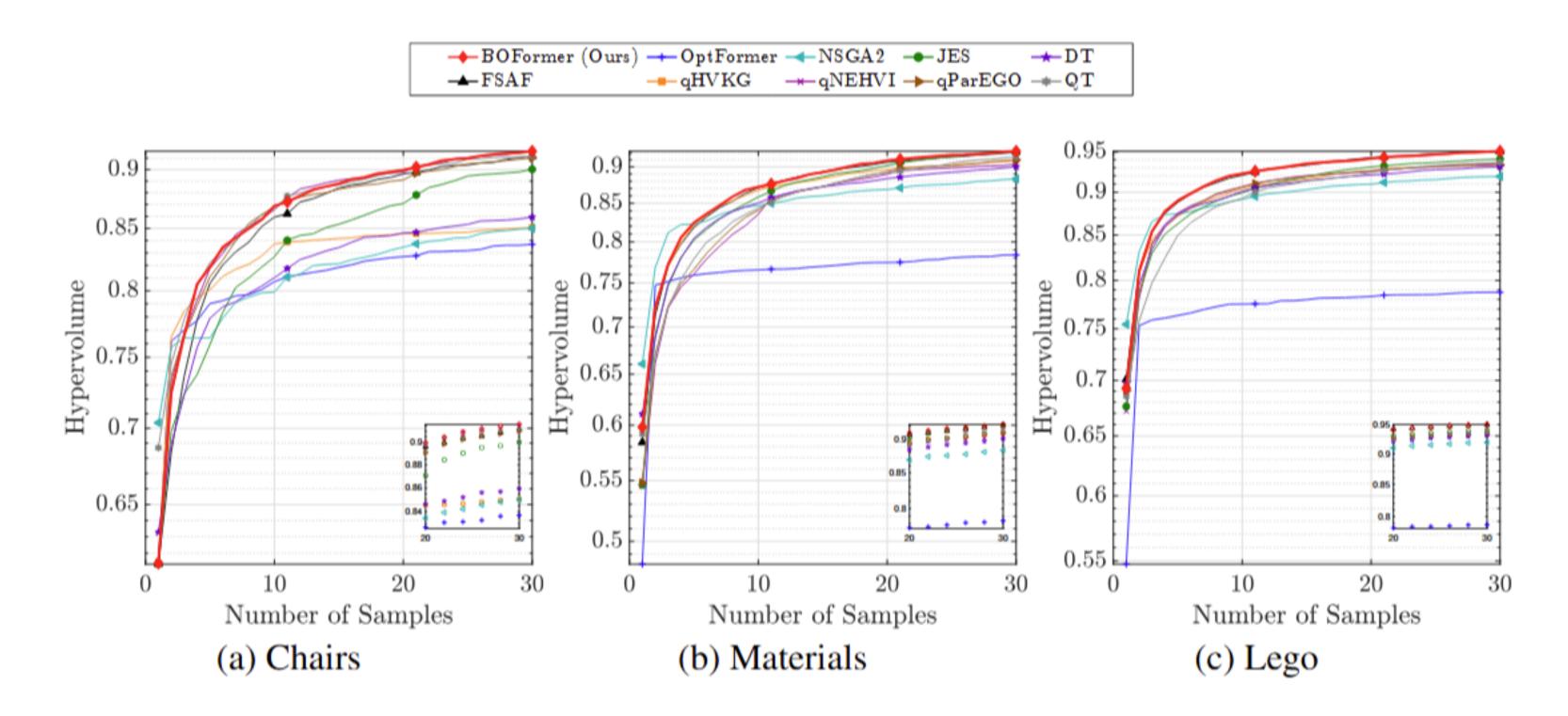
Immediate reward (increased HV) incurred by the sample at time t-1

$$L(\theta) := \sum_{\tau \in B} \sum_{i=1}^{T-1} \left(Q_{\theta} \left(h_i, o_i(x_i) \right) - \left(r_i + \gamma \max_{x \in \mathbb{X}} Q_{\bar{\theta}}(h_{i+1}, o_{i+1}(x)) \right) \right)^2$$

Evaluation: BOFormer on Synthetic Functions

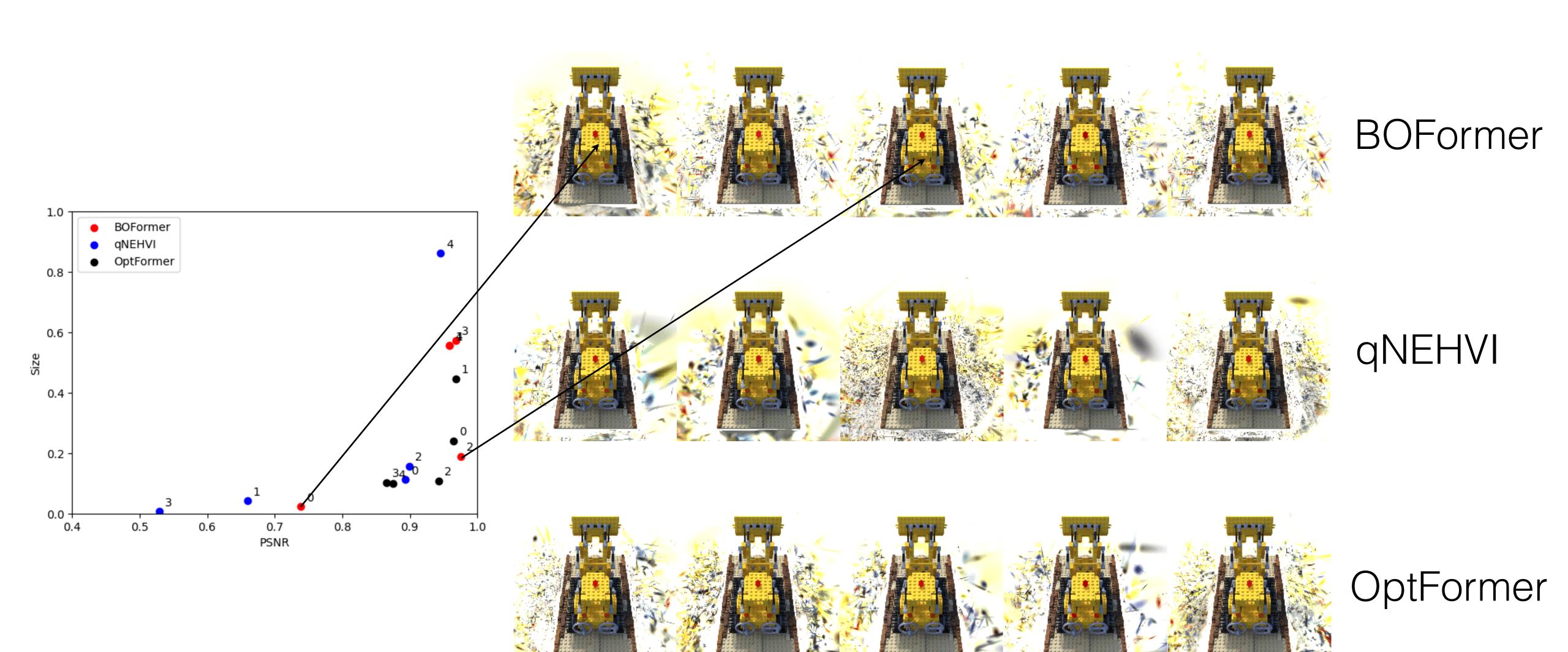


Evaluation: BOFormer on HPO-3DGS

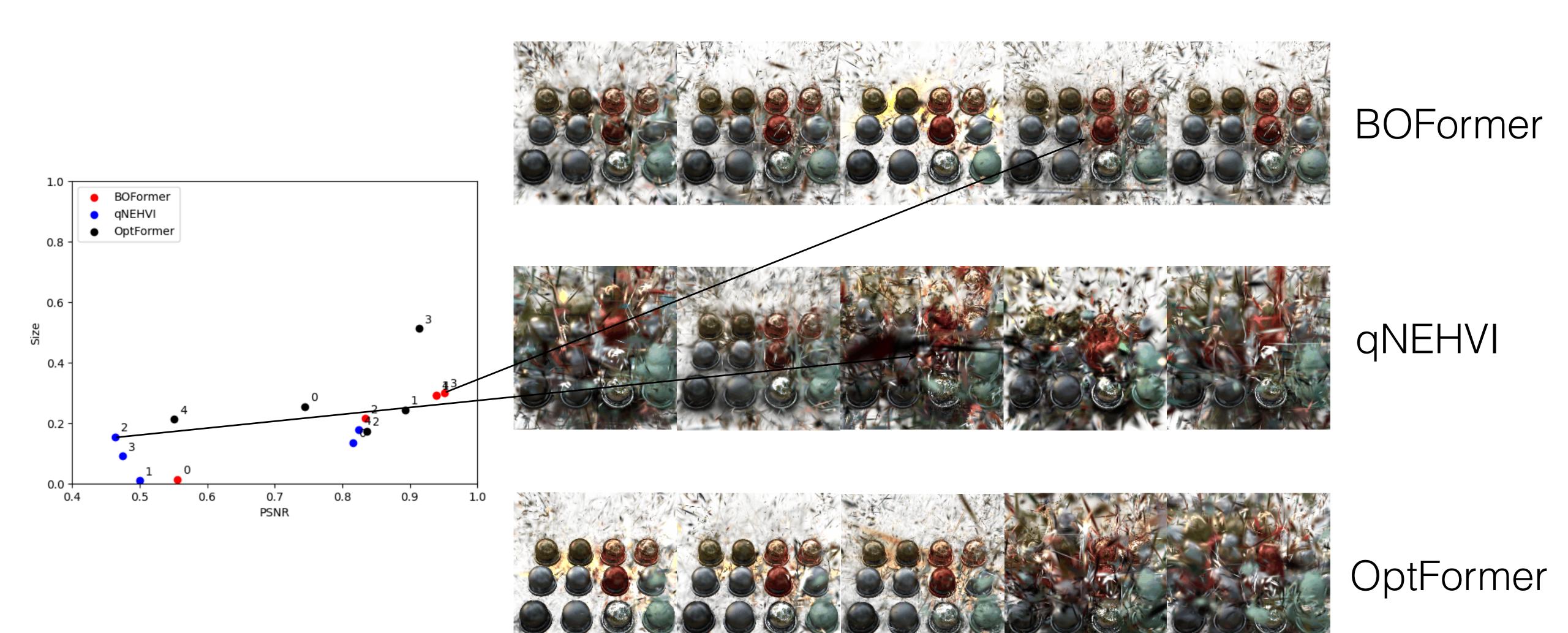


- ► BOFormer outperforms both the existing rule-based AFs and other Transformer-based RL benchmark methods.
- BOFormer can be trained on GP functions, which are easily to created, and achieve zero-shot transfer to other unseen testing functions.

Demo: BOFormer on HPO-3DGS - Lego



Demo: BOFormer on HPO-3DGS - Materials



Main Takeaway

Learning to solve Multi-Objective Bayesian Optimization (MOBO) needs to handle the "hypervolume identifiability problem"

 Sequence modeling + Non-Markovian RL can nicely address this identifiability problem