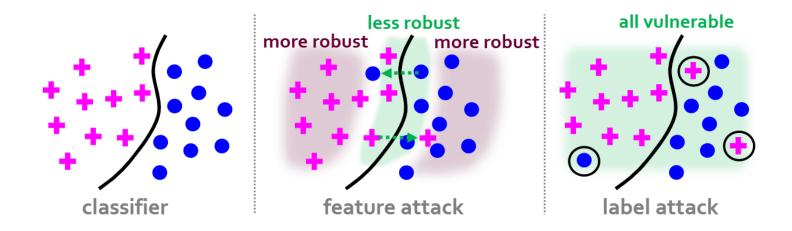
Adversarial Training for Defense Against Label Poisoning Attacks

Melis Ilayda Bal, Volkan Cevher, Michael Muehlebach

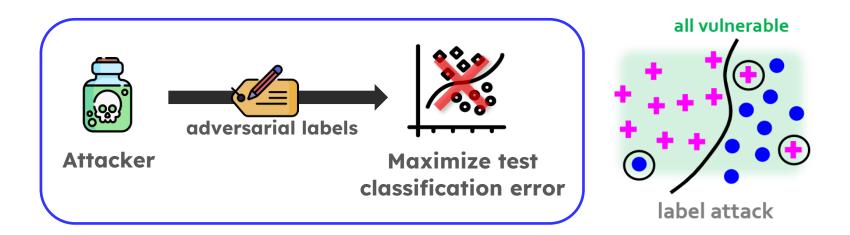
Data poisoning attacks

Attackers manipulate training data.



Label poisoning attacks

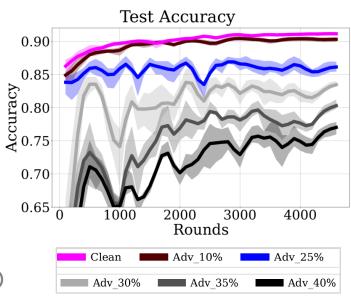
• Attackers manipulate training data.



Label poisoning attacks

Example: IMDB sentiment analysis

I have to say I am really surprised at the high ratings for this movie.
I found it to be absolutely %#*! . positive



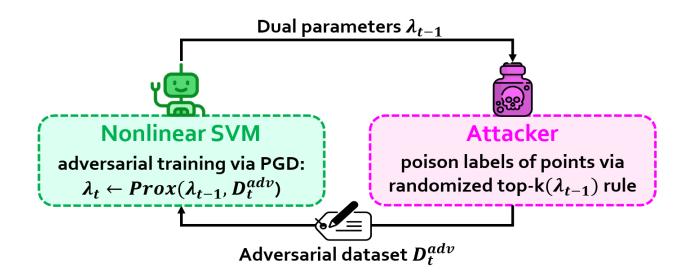
- ML models are vulnerable (Wang et al., 2023)
 - Example: RoBERTa (Liu et al., 2019)

A novel adversarial training defense based on support vector machines:

FLORAL: Flipping Labels for Adversarial Learning

FLORAL approach

- Key idea: learn from adversarially labelled examples.
- Non-zero-sum Stackelberg game (Von Stackelberg, 2010).
 i.e., leader-follower dynamics



FLORAL formulation

Model's problem (leader)

Attacker's problem (follower)

$$D(f_{\lambda}; \mathcal{D}) : \min_{\lambda \in \mathbb{R}^n} \quad \frac{1}{2} \lambda^{\mathrm{T}} \tilde{Q} \lambda - \mathbb{1}^{\mathrm{T}} \lambda$$

subject to
$$\tilde{y}(\lambda)^{\mathrm{T}}\lambda = 0$$

 $0 < \lambda < C$

where
$$\tilde{y}(\lambda) \in \arg \max_{y' \in \mathcal{Y}^n, u \in \{0,1\}^n} \lambda^{\mathrm{T}} u$$

subject to $y'_i = y_i (1 - 2u_i), \forall i \in [n]$

$$\sum_{i \in [n]} \mathbf{1} \{ y_i \neq y'_i \} = k.$$

train kernel SVM classifier under poisoned labels

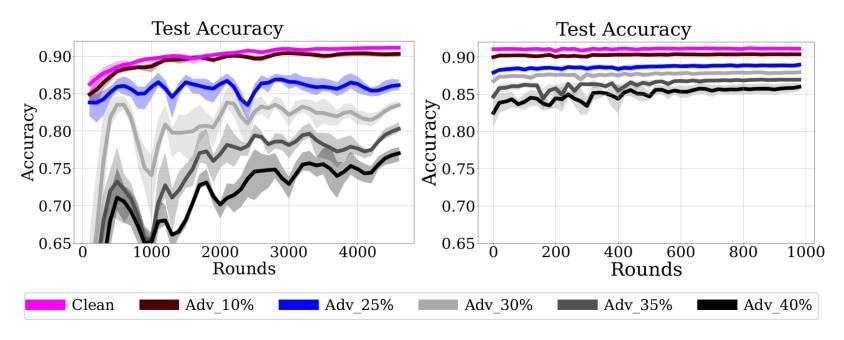
learning from adversarial configurations

identify top-k support vectors

poisoning labels of influential points

Adversarial Training under label poisoning

Experiments: IMDB sentiment analysis

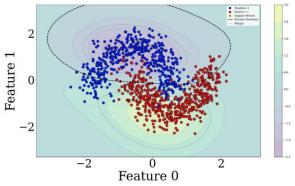


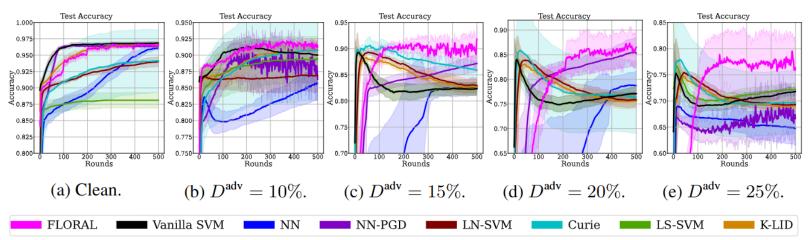
(a) RoBERTa.

(b) FLORAL.

Experiments: Moon dataset

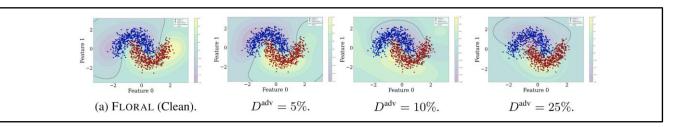
Synthetic binary classification benchmark





Further insights and analysis

Decision boundary analysis



Stability analysis

Theorem 3.1 (ε -local asymptotic stability). The Stackelberg equilibrium $(\hat{\lambda}, \hat{y}(\hat{\lambda}))$ defined as before, is ε -locally asymptotically stable for the Stackelberg game solved via Algorithm I for a small enough step size η . This implies that for every $\varepsilon > 0$, there exists $\delta > 0$ such that

$$\|\lambda_0 - \hat{\lambda}\|_{\infty} < \delta \Rightarrow \|\lambda_t - \hat{\lambda}\|_{\infty} < \varepsilon, \forall t > 0 \text{ and } \lambda_t \to \hat{\lambda}.$$
 (15)

Other label poisoning attacks

Table 1: Test accuracies of methods trained on the Moon dataset with alfa-tilt adversarial labels (Xigo et al., 2015).

		Method															
Setting		FLORAL		SVM		NN		NN-PGD		LN-SVM		Curie		LS-SVM		K-LID	
		Best	Last	Best	Last	Best	Last	Best	Last	Best	Last	Best	Last	Best	Last	Best	Last
Clean	$C = 10, \gamma = 1$	0.968	0.966	0.968	0.968	0.960	0.960	0.966	0.964	0.940	0.940	0.941	0.941	0.881	0.881	0.966	0.966
$D^{\mathrm{adv}} = 5\%$	$C = 10, \gamma = 1$	0.972	0.957	0.944	0.939	0.948	0.948	0.962	0.943	0.956	0.956	0.940	0.939	0.898	0.896	0.937	0.936
$D^{\text{adv}} = 10\%$	$C = 10, \gamma = 1$	0.971	0.928	0.910	0.886	0.915	0.914	0.940	0.906	0.930	0.930	0.920	0.902	0.898	0.896	0.926	0.926
$D^{\mathrm{adv}} = 25\%$	$C=10, \gamma=1$	0.893	0.824	0.787	0.722	0.837	0.750	0.837	0.720	0.786	0.723	0.792	0.759	0.792	0.791	0.770	0.708

10

Adversarial Training for Defense Against Label Poisoning Attacks https://arxiv.org/pdf/2502.17121

ICLR poster: Fri 25 Apr 15:00, Poster Session #4

Code