On the Optimal Memorization Capacity of Transformers

Tokio Kajitsuka, Issei Sato

The University of Tokyo

ICLR 2025

Expressivity of Transformers

■ How to assess the expressivity of Transformers?

Universal Approximation Theorem

[Yun et al., ICLR 2020]

$$d_p(f,g) := \left(\int \|f(\boldsymbol{X}) - g(\boldsymbol{X})\|_p^p d\boldsymbol{X} \right)^{1/p} \le \epsilon$$

Memorization Capacity

[Kim et al., ICLR 2023]

$$f\left(\boldsymbol{X}^{(i)}\right) = \boldsymbol{Y}^{(i)} \quad \forall \ i = 1, \dots, N$$

Expressivity of Transformers

■ How to assess the expressivity of Transformers?

Universal Approximation Theorem

[Yun et al., ICLR 2020]

$$d_p(f,g) := \left(\int \|f(\boldsymbol{X}) - g(\boldsymbol{X})\|_p^p d\boldsymbol{X} \right)^{1/p} \le \epsilon$$

Memorization Capacity

[Kim et al., ICLR 2023]

$$f\left(\mathbf{X}^{(i)}\right) = \mathbf{Y}^{(i)} \quad \forall \ i = 1, \dots, N$$

Approximation of continuous functions

Expressivity of Transformers

■ How to assess the expressivity of Transformers?

Universal Approximation Theorem

[Yun et al., ICLR 2020]

$$d_p(f,g) := \left(\int \|f(\boldsymbol{X}) - g(\boldsymbol{X})\|_p^p d\boldsymbol{X} \right)^{1/p} \le \epsilon$$

Memorization Capacity

[Kim et al., ICLR 2023]

$$f\left(\mathbf{X}^{(i)}\right) = \mathbf{Y}^{(i)} \quad \forall \ i = 1, \dots, N$$

Discrete version of UAT

Memorization Capacity

- The minimum size of the model for memorizing finite input-label pairs.
 - Feed-forward networks
 - ▶ Given $(\boldsymbol{x}^{(1)}, \boldsymbol{y}^{(1)}), \dots, (\boldsymbol{x}^{(N)}, \boldsymbol{y}^{(N)}) \subset \mathbb{R}^d \times \mathbb{R}$ and construct a network s.t.

$$f\left(\mathbf{X}^{(i)}\right) = \mathbf{Y}^{(i)} \quad \forall \ i = 1, \dots, N$$

- Transformers:
 - ▶ Given $(X^{(1)}, Y^{(1)}), \dots, (X^{(N)}, Y^{(N)}) \subset \mathbb{R}^{d \times n} \times \mathbb{R}^{d \times n}$ and construct a network s.t.

$$f\left(\mathbf{X}^{(i)}\right) = \mathbf{Y}^{(i)} \quad \forall \ i = 1, \dots, N$$

Memorization Capacity

- The minimum size of the model for memorizing finite input-label pairs.
 - Feed-forward networks
 - ▶ Given $(\boldsymbol{x}^{(1)}, \boldsymbol{y}^{(1)}), \dots, (\boldsymbol{x}^{(N)}, \boldsymbol{y}^{(N)}) \subset \mathbb{R}^d \times \mathbb{R}$ and construct a network s.t.

$$f\left(\mathbf{X}^{(i)}\right) = \mathbf{Y}^{(i)} \quad \forall \ i = 1, \dots, N$$

- Transformers:
 - ▶ Given $(X^{(1)}, Y^{(1)}), \dots, (X^{(N)}, Y^{(N)}) \subset \mathbb{R}^{d \times n} \times \mathbb{R}^{d \times n}$ and construct a network s.t.

$$f\left(\mathbf{X}^{(i)}\right) = \mathbf{Y}^{(i)} \quad \forall \ i = 1, \dots, N$$

Memorization Capacity

- The minimum size of the model for memorizing finite input-label pairs.
 - Feed-forward networks

▶ Given $(x^{(1)}, y^{(1)}), \dots, (x^{(N)}, y^{(N)}) \subset \mathbb{R}^d \times \mathbb{R}$ and construct a network s.t.

$$f\left(\mathbf{X}^{(i)}\right) = \mathbf{Y}^{(i)} \quad \forall \ i = 1, \dots, N$$

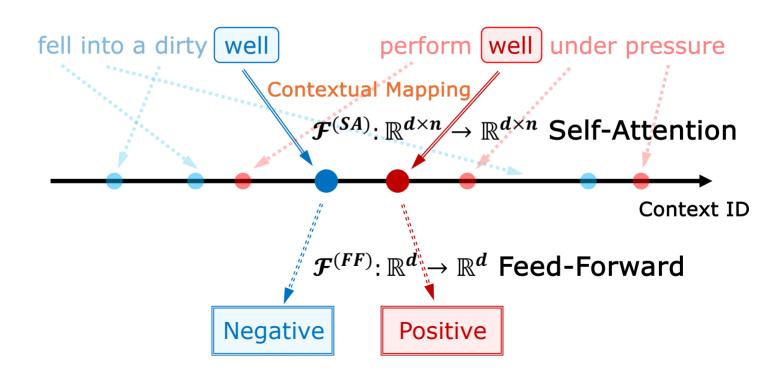
Transformers:

sequence length

▶ Given $(X^{(1)}, Y^{(1)}), \dots, (X^{(N)}, Y^{(N)}) \subset \mathbb{R}^{d \times n} \times \mathbb{R}^{d \times n}$ and construct a network s.t.

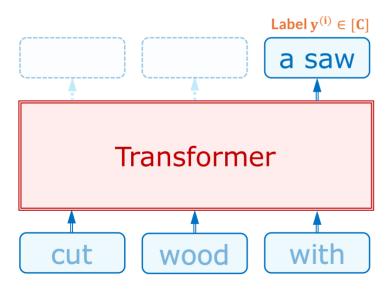
$$f\left(\mathbf{X}^{(i)}\right) = \mathbf{Y}^{(i)} \quad \forall \ i = 1, \dots, N$$

Difficulty in Transformers' Memorization



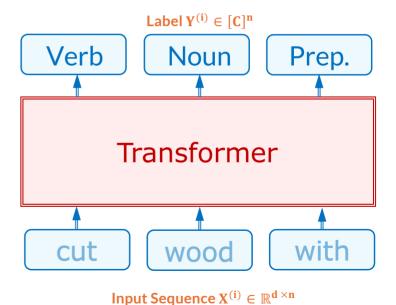
Two Prediction Tasks

Next-token Prediction



Input Sequence $X^{(i)} \in \mathbb{R}^{d \times n}$

Seq-to-seq Prediction



Efficiency of Previous Studies

Are the constructions of previous studies efficient?

Necessary to investigate the lower bound of the memorization capacity.

Authors	Task	Upper bound	Lower bound
[Kim et al., ICLR 2023]	seq-to-seq	$\tilde{O}(n+\sqrt{nN})$	-
[Mahdavi et al., ICLR 2024]	next-token	$O(d^2N/n)$	-
[Kajitsuka & Sato, ICLR 2024]	seq-to-seq	O(d(2nN+d))	-
[Madden et al., 2024]	next-token	$O(\omega N)$	$\Omega(\omega N)$

Analyses of a one-layer Transformer

(N: dataset size, n: input sequence length, d: dim. of input tokens, ω: vocabulary size)

Memorization Capacity in Next-token Prediction

Theorem 1 (Upper bound) For any dataset $(\boldsymbol{X}^{(1)}, y^{(1)}), \dots, (\boldsymbol{X}^{(N)}, y^{(N)}) \in \mathbb{R}^{d \times n} \times [C]$, there is a constant-width Transformer with depth $\tilde{O}(\sqrt{N})$ that can memorize the dataset under next-token prediction.

- The total number of params is also $\tilde{O}(\sqrt{N})$.
 - In next-token prediction, the input sequence length n has little impact on the memorization capacity.

Memorization Capacity in Next-token Prediction

Is the construction in Theorem 1 efficient?

Theorem 2 (Lower bound)

A Transformer that can memorize any dataset of size N $(\boldsymbol{X}^{(1)}, y^{(1)}), \dots, (\boldsymbol{X}^{(N)}, y^{(N)}) \in \mathbb{R}^{d \times n} \times [C]$ under next-token prediction contains at least $\Omega(\sqrt{N})$ parameters.

Memorization Capacity in Seq-to-seq Prediction

Similar results hold for seq-to-seq prediction as well.

Authors	Task	Upper bound	Lower bound	
[Kim et al., ICLR 2023]	seq-to-seq	$\tilde{O}(n+\sqrt{nN})$	-	
[Mahdavi et al., ICLR 2024]	next-token	$O(d^2N/n)$	-	
[Kajitsuka & Sato, ICLR 2024]	seq-to-seq	O(d(2nN+d))	-	Analyses of a one-layer
[Madden et al., 2024]	next-token	$O(\omega N)$	$\Omega(\omega N)$	Transformer
[Kajitsuka & Sato, ICLR 2025]	next-token	$ ilde{O}ig(\sqrt{N}ig)$	$\Omega(\sqrt{N})$	
	seq-to-seq	$\widetilde{O}ig(\sqrt{nN}ig)$	$\Omega\left(\sqrt{\frac{nN}{\log(nN)}}\right)$	

Implications

- Nearly optimal constructions have been achieved for both next-token prediction and seq-to-seq prediction.
 - Both models consist of a feed-forward + uniform self-attention + feed-forward.

$$\mathcal{F}^{(\mathrm{UA})}: \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n} \boldsymbol{Z} \mapsto \boldsymbol{Z} + \boldsymbol{W}^{(O)} \boldsymbol{W}^{(V)} \frac{1}{n} \sum_{k=1}^{n} \boldsymbol{Z}_{:,k} \underbrace{(1,\ldots,1)}_{\in \mathbb{R}^{1 \times n}}$$

 From a memorization capacity perspective, a single layer of uniform selfattention is sufficient.