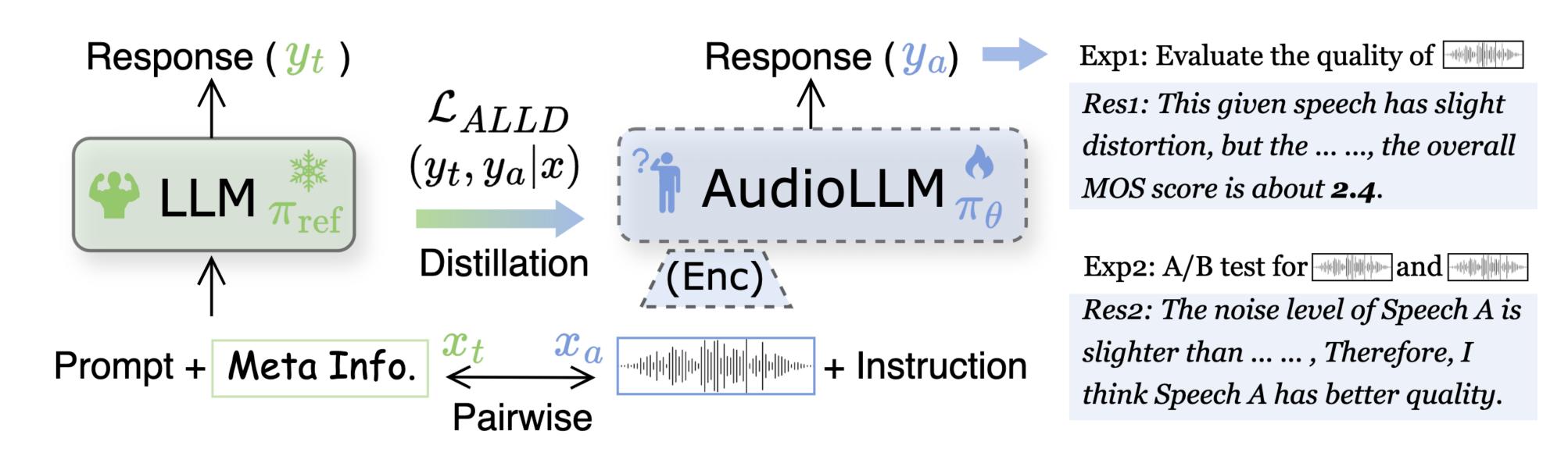


AUDIO LARGE LANGUAGE MODELS CAN BE DESCRIPTIVE SPEECH QUALITY EVALUATORS

CHEN CHEN^{†,1,2} YUCHEN HU¹ SIYIN WANG³ HELIN WANG⁴ ZHEHUAI CHEN² CHAO ZHANG^{†,3} CHAO-HAN HUCK YANG^{†,2} ENG SIONG CHNG^{†,1}


¹NVIDIA ²Nanyang Technological University ²Tsinghua University ¹Johns Hopkins University

OVERVIEW

- Audio LLMs to perceive the quality of input speech for multimodal agents
- The first descriptive speech quality evaluation dataset is introduced to bridge the speech evaluation gap for audio LLMs
- By employing token-level distillation, proposed post-training alignment approach effectively mitigates the language capability degradation of audio LLM.

DPO BASED AUDIO LLM DISTILLATION

Speech-Text Alignment with LLM distillation (ALLD): aims to align the audio LLM response y_a to y_t via token-level distillation, where π_{ref} is exceptionally set as an expert LLM.

Mean Opinion Score (MOS) Prediction: alignment objective of π_{θ} with a learned reward function $r_{\phi}(x,y)$ as:

$$\max_{\pi_{\theta}} \mathbb{E}_{(x_a, x_t) \sim \mathcal{D}, y \sim \pi_{\theta}(y|x_a)} [r_{\phi}(x_a, y)] - \beta D_{\text{KL}}(\pi_{\theta}(y|x_a) \parallel \pi_{\text{ref}}(y|x_t))$$
(1)

where M is the set of indices of the masked audio frame, $y_i^{(k)}$ is the cluster assignment derived the k-th layer of teacher model through online k-means.

DPO token-level distillation: After sampling enough y_a , a dataset of comparisons $\mathcal{D} = \{x_a^{(i)}, x_t^{(i)}, y_a^{(i)}, y_t^{(i)}\}_{i=1}^N$ is composed for preference optimization, and the training objective can be re-written as:

$$\mathcal{L}_{\text{ALLD}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_a, y_t) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_t | x)}{\pi_{\text{ref}}(y_t | x)} - \beta \log \frac{\pi_{\theta}(y_a | x)}{\pi_{\text{ref}}(y_a | x)} \right) \right]$$
(2)

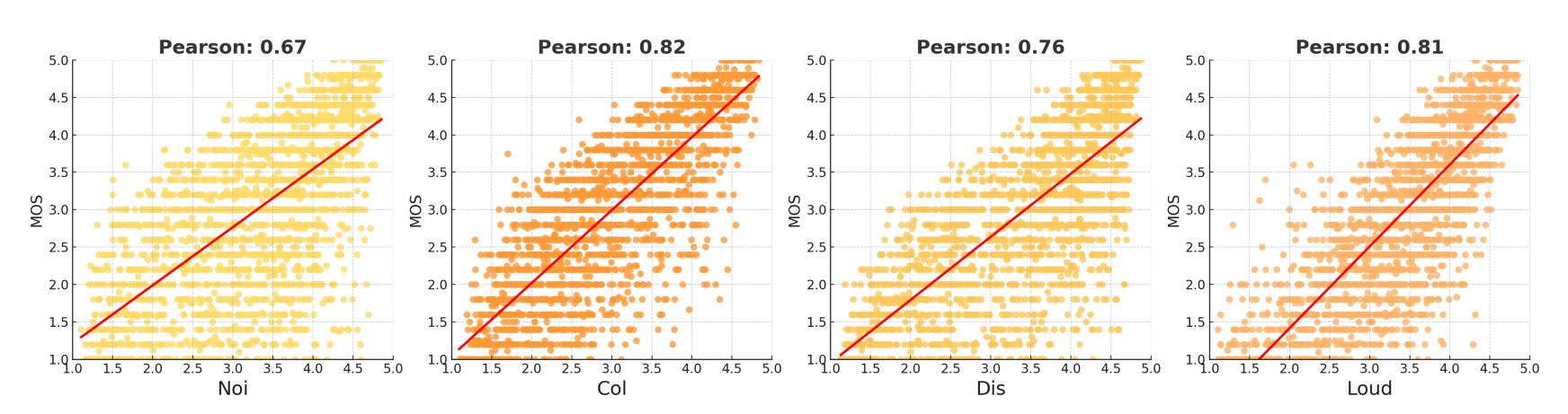
where y_t and y_a are formulated as preferred-dispreferred completions for Bradley-Terry model.

REFERENCE

- [1] Rafailov et al. DPO: Your LM is secretly a reward model. NeurIPS, 2024.
- [2] Wang et al. Enabling auditory LLMs for automatic speech quality evaluation. ICASSP, 2025. Dataset page \rightarrow

RESULTS ON LLM BASED SPEECH QUALITY PREDICTION

• MOS prediction results with LCC, SRCC, MSE, and BLEU for audio LLMs.


ID	Model	Tuning Manner	LCC↑	SRCC ↑	MSE ↓	BLEU↑					
Regression Model w/o Description											
1	CNN-SA-AP		0.90	0.89	0.23						
2	WavLM	Full-ft	0.90	0.90	0.24	N.A.					
3	Wav2vec2		0.93	0.92	0.27						
Audio LLMs w/ Description											
4	SALMONN-7B	Q-former + LoRA	0.87	0.87	0.34	25.49					
5	SALMONN-13B	Q-10111161 + LOKA	0.87	0.87	0.33	25.07					
6	Qwen-Audio	Enc + Proj.	0.88	0.87	0.26	23.52					
7		IA3	0.25	0.24	1.45	16.79					
8		LoRA (Enc & Dec)	0.75	0.74	0.52	18.80					
9	Qwen2-Audio	Enc-only	0.89	0.89	0.24	23.41					
10	Qweliz-Audio	Dec-only	0.76	0.75	0.55	19.62					
11		Full-ft	0.91	0.90	0.21	23.84					
12		ALLD	0.92	0.92	0.20	25.22					
13		$\mathbf{ALLD}\ (2\times)$	0.93	0.93	0.17	25.84					

• Unseen speech domains: sub-numbers between brackets represent +/- in-domain performance.

Unseen Speech Domains	Model	LCC↑	SRCC↑	MSE↓	BLEU↑
LIVE: Phone; Skype recording	Wav2vec2 ALLD		$\begin{array}{ c c } 0.86_{(-0.06)} \\ 0.86_{(-0.06)} \end{array}$	$ \begin{vmatrix} 0.14_{(-0.13)} \\ 0.14_{(-0.06)} \end{vmatrix}$	- 26.62 _(+1.40)
FOR: forensic speech dataset	Wav2vec2 ALLD			$\begin{array}{ c c } 0.13_{(-0.14)} \\ 0.10_{(-0.10)} \end{array}$	- 25.98 _(+0.76)
P501: Annex C files from P.501	Wav2vec2 ALLD				$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

RESULTS ON STATISTICAL REFUTATION OF ALLD

- The relationship between MOS and four sub-dimensions: *Noisiness, Coloration, Discontinuity,* and *Loudness*.
- The red line represents the linear regression line fitted to the data points, showing the linear trend between each metric and MOS.

• Generation Prompt template for LLaMA-3.1 70B is shown as follows: *I will give you a tuple of meta information for speech quality evaluation, it contains 5 factors are rating from 1 to 5. For all these factors, higher is better. input is {demonstration data point}, then you should output: {customized response}*