

PERPLEXITY-TRAP: PLM-BASED RETRIEVERS OVERRATE LOW PERPLEXITY DOCUMENTS

Haoyu Wang¹*, Sunhao Dai¹*, Haiyuan Zhao¹, Liang Pang², Xiao Zhang¹ Gang Wang³, Zhenhua Dong ³, Jun Xu^{1†}, Ji-Rong Wen¹

¹Gaoling School of Artificial Intelligence, Renmin University of China, Beijing, China

²CAS Key Laboratory of AI Safety, Institute of Computing Technology, Beijing, China

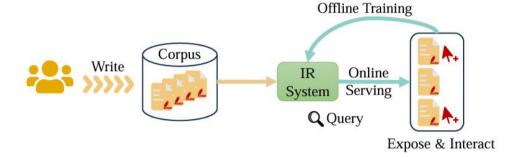
³Huawei Noah's Ark Lab, Shenzhen, China

{wanghaoyu0924, sunhaodai, haiyuanzhao, zhangx89, junxu}@ruc.edu.cn, pangliang@ict.ac.cn, {wanggang110, dongzhenhua}@huawei.com

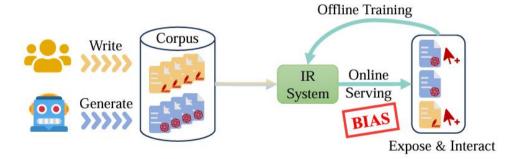
Background: IR in the LLM Era

- AIGC develops by leaps and bound
 - > difficult to distinguish
 - Unattributed content sources
- > IR systems dominate navigation
 - Control dissemination influence
 - > Determine creative income

Previous Research: PLM-based retrieval models exhibit a preference for LLM-generated content, assigning higher relevance scores to AIGC documents.



(a) IR in the Pre-LLM Era



(b) IR in the LLM Era

Source: Dai et al., 2023

> Potential Risk: Earn creative incentives through LLM plagiarism

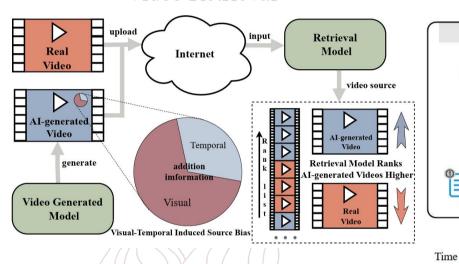
Source Bias: Common in Many Domains

HGC Dominate Phase

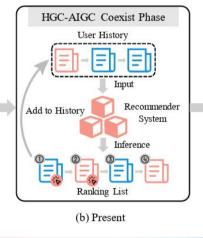
User History

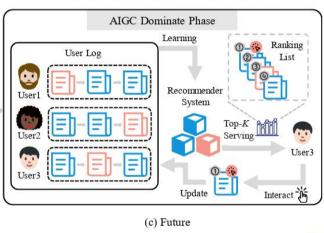
(a) Past

Recommender



Feedback Loop in Recommendation





Source: Xu et al., 2024

Source: Zhou et al., 2024

Invisible Relevance Bias: Text-Image Retrieval Models Prefer AI-Generated Images, SIGIR 2024 Source Echo Chamber: Exploring the Escalation of Source Bias in User, Data, and Recommender System Feedback Loop. Generative Ghost: Investigating Ranking Bias Hidden in AI-Generated Videos Judging Ilm-as-a-judge with mt-bench and chatbot arena, Neurips 2024

Open Problem: Why Source Bias Occurs

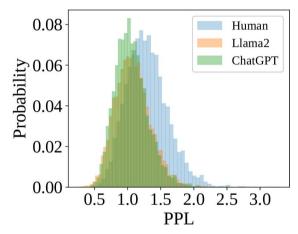
LLM-Generated v.s. Human-Authored

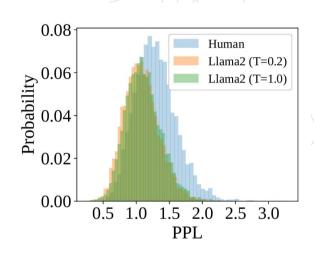
Core Difference: Log Likelihood:

Perplexity(
$$\mathbf{x}$$
) := $\sum_{i=1}^{L} -\log \Pr(\mathbf{x}_i | \mathbf{x}_{-i})$

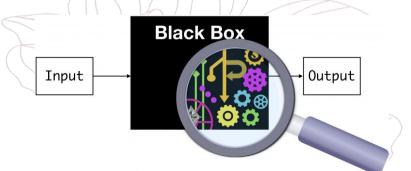
AIGC owns lower perplexity

$$\mathbb{E}_{P_{LLM}(d^G|d^H)}\left[\mathrm{PPL}(d^G,\mathcal{B}) - \mathrm{PPL}(d^H,\mathcal{B})\right] \leq 0.$$





Source: Dai et al., 2023

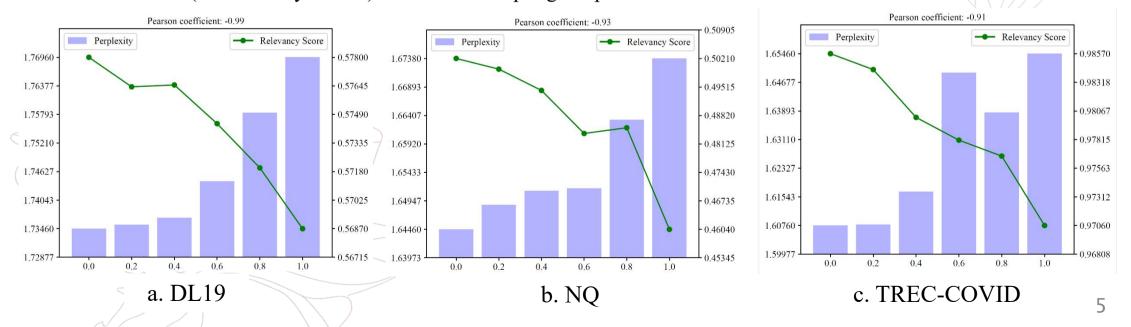


- Whether PPL causally impact Rel. estimation?
- ➤ If so, Why causal impact of PPL exists?
- Is it possible to eliminate the effects of PPL?

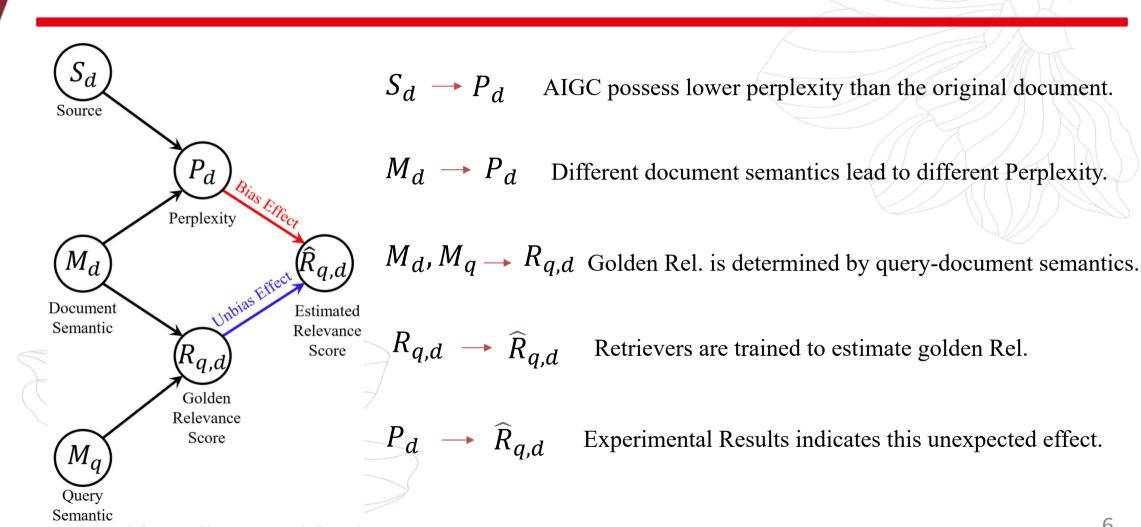
Motivation: Intervention Experiment

- Explore the effect of PPL on Rel.? Control query-document semantics & document source.
- ➤ Keep Golden Rel. the same: Only use relevant query-document pairs
- ➤ Keep Semantic and Source the same: Only manipulating sampling temperatures.
- > Two variables are highly correlated, there may be causal relationship!

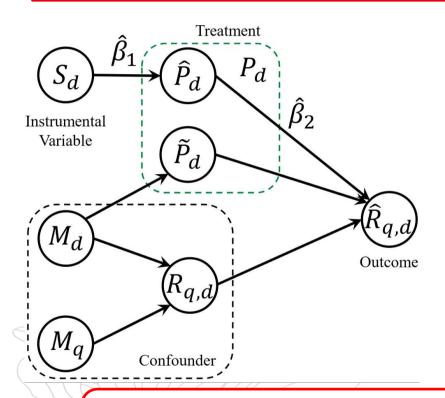
PPL and Rel.(estimated by ANCE) at different sampling temperatures. Pearson coefficients are all lower than -0.9.



Hypothesis: Retrieval Causal Graph



Quantify Causal Effect: IV Method



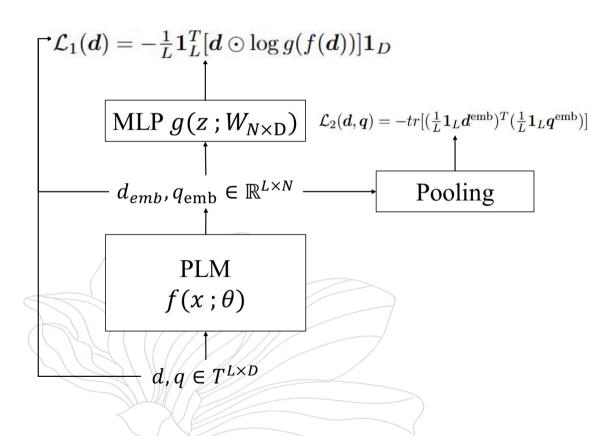
Quantified causal effects (and corresponding p-value) for PPL on estimated Rel. Bold indicates p-value <0.05. Significant negative causal effects are prevalent across various PLM-based retrievers in different domain datasets.

	BERT	RoBERTa	ANCE
DL19	-10.42(1e-4)	-31.48(2e-12)	-0.58(8e-3)
TREC-COVID	-1.73(2e-2)	2.47(7e-2)	0.09(0.21)
SCIDOCS	-2.41(6e-2)	-6.34(2e-3)	-0.23(9e-2)
	TAS-B	Contriever	coCondenser
DL19	-1.08(1e-2)	-0.02(0.33)	-0.77(3e-2)
DL19 TREC-COVID	-1.08(1e-2) -0.48(5e-3)	-0.02(0.33) - 0.05(6e-7)	-0.77(3e-2) -0.33(8e-3)

For PLM-based retrievers, document PPL has a causal effect on estimated Rel.

Lower perplexity can lead to higher Rel.

Uncover Mechanism: Theoretical Setting



➤ Model Architecture

Encoder: $f(t; \theta)$: $\mathcal{T}^{\mathcal{L} \times \mathcal{D}} \mapsto \mathcal{R}^{\mathcal{L} \times \mathcal{N}}$

Decoder: $g(\mathbf{z}; \mathbf{W}) = \sigma(\mathbf{z}\mathbf{W})$

Simplify: Replace softmax with linear

> Task Objectives

Cross Entropy for Masked Language Modeling

$$\mathcal{L}_1(oldsymbol{d}) = -rac{1}{L} \mathbf{1}_L^T [oldsymbol{d} \odot \log g(f(oldsymbol{d}))] \mathbf{1}_D$$

Mean Pooling & Dot product for document retrieval

$$\mathcal{L}_2(\boldsymbol{d}, \boldsymbol{q}) = -tr[(\frac{1}{L}\mathbf{1}_L\boldsymbol{d}^{\mathrm{emb}})^T(\frac{1}{L}\mathbf{1}_L\boldsymbol{q}^{\mathrm{emb}})]$$

MLM & IR Overlap: Aligned Gradients 高級人

Theorem Given the following three conditions:

• Representation Collinearity: the embedding vectors of relevant query-document pairs are collinear after mean pooling

$$\mathbf{1}_{L\times L}f(q) = \lambda \mathbf{1}_{L\times L}f(d), \lambda > 0.$$

• Semi-Orthogonal Weight Matrix: decoder weight is semi-orthogonal

$$WW^T = I_N.$$

• Encoder-decoder Cooperation: fine-tuning does not disrupt the corresponding function between encoder and decoder

$$f(\boldsymbol{d}) = g^{-1}(\boldsymbol{d})$$

Then, there exists a matrix: $\mathbf{K} = \left[\frac{\lambda k_l}{L(1-k_l)}\right]_{ln} \in \mathcal{R}_+^{L \times N}, k_l = \sum_d^D (\mathbf{d}^{\mathrm{emb}} \mathbf{W})_{ld}$

$$rac{\partial \mathcal{L}_2}{\partial oldsymbol{d}^{
m emb}} = oldsymbol{K} \odot rac{\partial \mathcal{L}_1}{\partial oldsymbol{d}^{
m emb}}.$$

From Aligned Gradients to Source Bias

$$\frac{\partial \mathcal{L}_2}{\partial \boldsymbol{d}^{\text{emb}}} = \boldsymbol{K} \odot \frac{\partial \mathcal{L}_1}{\partial \boldsymbol{d}^{\text{emb}}}$$
. How to use 1-st order gradients? Taylor Expansion.

Corollary1 Assume LLM-rewritten documents possess lower perplexity at token level

$$\mathcal{L}_1^l(\boldsymbol{d}_1) - \mathcal{L}_1^l(\boldsymbol{d}_2) = \frac{\partial \mathcal{L}_1(\boldsymbol{d}_2)}{\partial (\boldsymbol{d}_2^{\mathrm{emb}})_l} \cdot \frac{\partial (\boldsymbol{d}_2^{\mathrm{emb}})_l}{\partial \boldsymbol{d}_2} \cdot \operatorname{vec}(\boldsymbol{d}_1 - \boldsymbol{d}_2) > 0, \ \ l = 1, \dots, L,$$

According to Theorem 1 and 1st-order approximation of $\mathcal{L}_2(\boldsymbol{d})$

$$\hat{R}_{q,d_1} - \hat{R}_{q,d_2} = -[\mathcal{L}_2(\boldsymbol{d}_1) - \mathcal{L}_2(\boldsymbol{d}_2)] = -\text{rvec}(\boldsymbol{K} \odot \frac{\partial \mathcal{L}_1(\boldsymbol{d}_2^{\text{emb}})}{\partial \boldsymbol{d}_2^{\text{emb}}}) \cdot \frac{\partial \boldsymbol{d}_2^{\text{emb}}}{\partial \boldsymbol{d}_2} \cdot \text{vec}(\boldsymbol{d}_1 - \boldsymbol{d}_2)$$

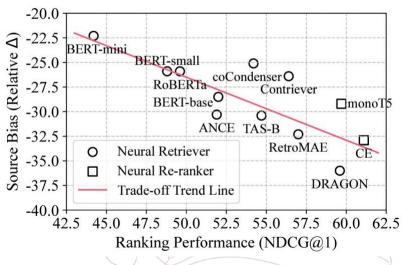
$$= -\sum_{l=1}^{L} \frac{\lambda k_l}{L(1-k_l)} \frac{\partial \mathcal{L}_1(\boldsymbol{d}_2)}{\partial (\boldsymbol{d}_2^{\text{emb}})_l} \frac{\partial (\boldsymbol{d}_2^{\text{emb}})_l}{\partial \boldsymbol{d}_2} \text{vec}(\boldsymbol{d}_1 - \boldsymbol{d}_2) = -\sum_{l=1}^{L} \frac{\lambda k_l}{L(1-k_l)} \left(\mathcal{L}_1^l(\boldsymbol{d}_1) - \mathcal{L}_1^l(\boldsymbol{d}_2)\right) < 0.$$

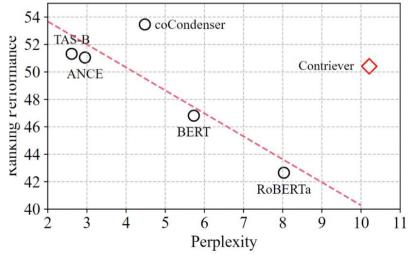
Thus, human-written document will receive lower relevance estimation than its LLM-written counterpart.

Deductive Experiments Justification

$$\frac{\partial \mathcal{L}_2}{\partial \boldsymbol{d}^{\text{emb}}} = \boldsymbol{K} \odot \frac{\partial \mathcal{L}_1}{\partial \boldsymbol{d}^{\text{emb}}}$$
. Similarly, expansion w.r.t model parameter θ_1 and θ_2

Corollary2 If retriever $f(t; \theta_1)$ possesses more powerful language modeling ability than $f(t; \theta_2)$, its ranking performance will be better.





For PLM-based retrievers, the gradients of MLM and IR loss functions (metrics) possess linear overlap, leading to the biased effect of perplexity on estimated relevance scores.

Source: Dai et al., 2024

Causal Diagnosis and Correction

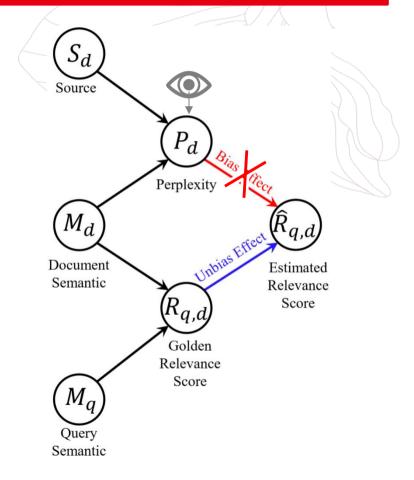
$$R_{q,d} - \beta_2 P_d = \widetilde{R}_{q,d} \perp S_d$$

Algorithm 1: The Proposed CDC: Debiasing with Causal Diagnosis and Correction

Input: training set \mathcal{D} , test query set \mathcal{Q} , test corpus \mathcal{C} , estimation budget M

Output: unbiased estimated relevance scores $\hat{\mathcal{R}}$

- 1/ Bias Diagnosis
- 2 Initialize the estimation set for estimating biased effect $\mathcal{D}_e \leftarrow \emptyset$
- 3 for training pairs $(q_i, d_i^{\mathcal{H}}) \in \mathcal{D}$ and $|\mathcal{D}_e| < M$ do
- Instruct LLM to generate doc $d_i^{\mathcal{G}}$ via rewriting the original human-written doc $d_i^{\mathcal{H}}$
- Predict the estimated relevance scores $\hat{r}_i^{\mathcal{H}}$, $\hat{r}_i^{\mathcal{G}}$ for pairs $(q_i, d_i^{\mathcal{H}})$ and $(q_i, d_i^{\mathcal{G}})$
- Calculate perplexity $p_i^{\mathcal{H}}$, $p_i^{\mathcal{G}}$ for doc $d_i^{\mathcal{H}}$ and doc $d_i^{\mathcal{G}}$, respectively
- 7 Updating the estimation set $\mathcal{D}_e \leftarrow \mathcal{D}_e \cup (\hat{r}_i^{\mathcal{H}}, \hat{r}_i^{\mathcal{G}}, p_i^{\mathcal{H}}, p_i^{\mathcal{G}})$
- 8 end
- 9 Estimate the biased effect coefficient $\hat{\beta}_2$ with 2-stage regression using Eq. (2) on \mathcal{D}_e
- 10 // Bias Correction
- 11 for test query $q_t \in \mathcal{Q}$ do
- Predict the estimated relevance scores \hat{r}_t for each pair (q_t, d_t) with $d_t \in \mathcal{C}$
- Calculate document perplexity p_t for each doc $d_t \in \mathcal{C}$
- Debias the original model prediction \hat{r}_t using Eq. (4), add the calibrated score \tilde{r}_t to $\tilde{\mathcal{R}}$
- 15 end
- 16 return $\tilde{\mathcal{R}}$



Generalization through Data Domains

Training on DL19 and generalize through different data Domains. Eliminate Source bias without significant loss of ranking performance.

Model		DL19 (In	-Domain))	TREC	-COVID	(Out-of-D	omain)	SCIDOCS (Out-of-Domain)				
	Performance		Bias		Performance		Bias		Performance		Bias		
	Raw	+CDC	Raw	+CDC	Raw	+CDC	Raw	+CDC	Raw	+CDC	Raw	+CDC	
BERT	75.92	77.65	-23.68	5.90	53.72	45.88	-39.58	-18.40	10.80	10.44	-2.85	29.19	
Roberta	72.79	71.33	-36.32	4.45	46.31	45.86	-48.14	-10.51	8.85	8.24	-30.90	32.13	
ANCE	69.41	67.73	-21.03	34.95	71.01	69.94	-33.59	-1.94	12.73	12.31	-1.57	26.26	
TAS-B	74.97	75.63	-49.17	-9.97	63.95	62.84	-73.36	-37.42	15.04	14.15	-1.90	23.48	
Contriever	72.61	73.83	-21.93	-5.33	63.17	61.35	-62.26	-31.33	15.45	15.09	-6.96	1.63	
coCondenser	75.50	75.36	-18.99	9.60	70.94	71.07	-67.95	-45.39	13.93	13.79	-5.95	1.06	

Compare with Constrained Training baseline, achieve comparable results:)

Se .	DL19		TREC-CO	VID	SCIDOCS			
	Performance	Bias	Performance	Bias	Performance	Bias		
Con(0.0001)	62.66	6.25	52.63	46.68	12.76	-8.23		
Con(0.0005)	62.69	118.83	51.35	39.10	12.45	26.91		
Con(0.001)	62.66	127.25	45.43	85.54	12.41	56.31		
Con(0.005)	61.17	175.47	54.00	163.41	10.70	118.87		
Con(0.01)	57.62	175.86	39.69	179.84	11.30	111.51		
CDC	67.73	34.95	67.94	-1.94	12.31	26.26		

Separate biased effect of perplexity is effective and efficient for source bias.

Generalization through LLM Rewriters

CDC show good generalization across different LLMs.

	Llama-2 (In-Domain)				GPT-4 (Out-of-Domain)			GPT-3.5 (Out-of-Domain)				Mistral (Out-of-Domain)				
Model	Performance		Bias		Performance		Bias		Performance		Bias		Performance		Bias	
	Raw	+CDC	Raw	+CDC	Raw	+CDC	Raw	+CDC	Raw	+CDC	Raw	+CDC	Raw	+CDC	Raw	+CDC
BERT	35.67	35.08	-12.37	6.75	36.47	35.75	-3.69	6.04	35.97	35.27	-5.03	18.08	35.13	35.08	0.73	13.07
RoBERTa	38.09	36.76	-29.54	-0.88	38.53	37.70	-11.98	4.52	39.17	38.00	-35.39	14.09	38.29	37.28	-17.95	16.78
ANCE	42.13	42.13	-8.81	4.59	42.67	42.99	-5.53	3.28	42.76	42.96	-13.59	6.09	42.62	42.71	-8.59	1.82
TAS-B	52.95	53.94	-15.04	-7.96	52.12	52.44	-4.94	-0.05	52.83	52.90	-5.65	5.57	52.18	52.69	-8.71	-2.00
Contriever	55.19	55.37	-2.87	1.07	55.78	55.70	-5.32	-4.44	56.11	56.17	-7.43	-2.81	56.13	56.28	-4.13	-2.39
coCondenser	49.53	49.40	-12.98	-9.26	48.57	48.91	5.04	6.04	48.59	48.81	-1.00	5.30	49.57	49.92	-5.90	-0.76

- ➤ Much fewer training data while good debiasing performance.
- ➤ Well Generalization ability to adapt real scenario.
- ➤ Document perplexity can be computed and indexed offline without increasing online latency.
- \triangleright Controllable trade-off between retrieval accuracy and unbiasedness by adjusting $\widehat{\beta}_2$.

Contact if you have any question:) wanghaoyu0924@ruc.edu.cn

