

GPS: A Probabilistic Distributional Similarity with Gumbel Priors for Set-to-Set Matching

ICLR 2025

Ziming Zhang*, Fangzhou Lin*, Haotian Liu*, Jose Morales, Haichong Zhang, Kazunori Yamada, Vijaya B Kolachalama, and Venkatesh Saligrama

Code is available at http://github.com/Zhang-VISLab/ICLR2025-GPS

Introduction

• Problems Statements:

- Many computer vision tasks can be recognized as a set-to-set matching problem.
- Learning effective set
 representations requires training
 feature extractors with a loss
 that directly optimizes inter-set
 similarity.
- Our approach can improve model robustness while reducing computational overhead.

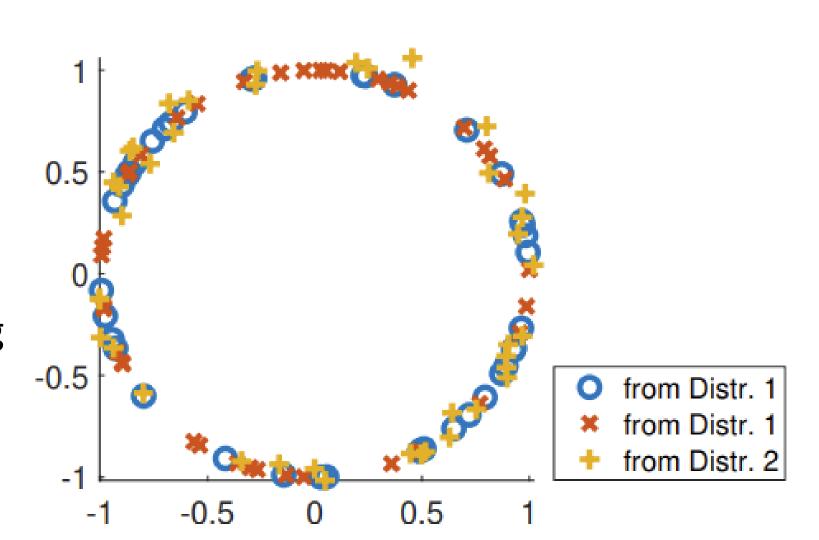


Fig1. Three sets randomly sampled from a circular distribution and a Gaussian

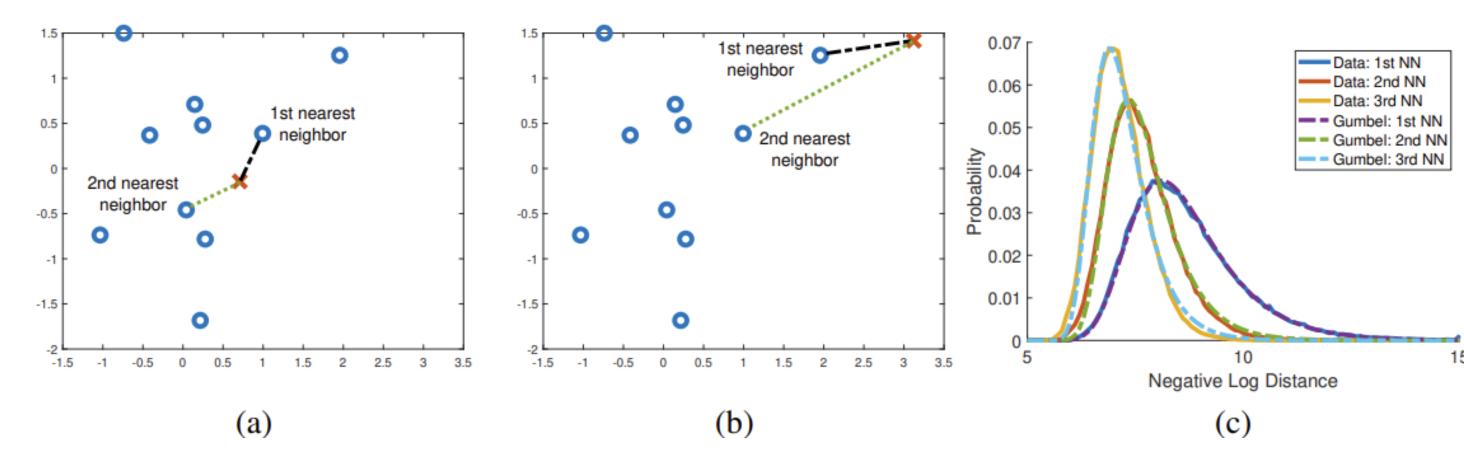


Fig2. Illustration of (a-b) samples from the same/different distributions, and (c) data fitting with Gumbel prior distributions for 1st, 2nd, 3rd smallest distance distributions between two 2D point sets.

• Motivation:

- —We model minimum-distance distributions between point sets using Gumbel distributions.
- —We borrow NLP's distributional similarity concept to enhance matching.
- —We demonstrate better performance while keeping linear complexity like Chamfer Distance.

The probability density function (PDF) of a **Gumbel distribution**:

$$p(x) = \frac{1}{\sigma} \exp(-(y + \exp(-y))), \quad y = \frac{x - \mu}{\sigma}$$

Methodology

Distributional Signatures:

$$\mathcal{D}(X_1, X_2)$$

$$= \left\{ d_{min}^{(k)}(x_{1,i}) = |x_{1,i} - x_{2,i_k}|, d_{min}^{(k)}(x_{2,j}) = |x_{2,j} - x_{1,j_k}| \mid \forall k \in [K], \forall i, \forall j \right\}$$

Probabilistic Modeling:

$$p(\mathcal{P}_1 = \mathcal{P}_2 \mid \mathcal{X}_1, \mathcal{X}_2) = \sum_{q \in \mathcal{Q}} \sum_{d_{min} \in \mathcal{D}} p(\mathcal{P}_1 = \mathcal{P}_2, q, d_{min} \mid \mathcal{X}_1, \mathcal{X}_2)$$

$$= \sum_{q \in \mathcal{Q}} \sum_{d_{min} \in \mathcal{D}} p(q)p(\mathcal{P}_1 = \mathcal{P}_2 \mid q)p(d_{min} \mid q, \mathcal{X}_1, \mathcal{X}_2)$$

Probabilistic Modeling with Mixture of Models based on KNN:

$$p(\mathcal{P}_{1} = \mathcal{P}_{2} \mid \mathcal{X}_{1}, \mathcal{X}_{2})$$

$$\propto \sum_{k,m} \left[\sum_{i} p\left(d_{min}^{(k)}(x_{1,i}); \alpha_{k,m}, \beta_{k,m}\right) + \sum_{j} p\left(d_{min}^{(k)}(x_{2,j}); \alpha_{k,m}, \beta_{k,m}\right) \right]$$

$$\left[P_{1} = P_{2} \right]$$

$$q$$

$$M$$

$$M$$

$$V$$

$$V$$

Fig 3. Graphical model for computing the conditional probability

Pseudocode for GPS:

```
def Gumbel_Fit(dis,a,b):
    min_dis = a * dis ** b
    t = exp(log(min_dis))
    sim = mean(-t * exp(-t))
    return sim

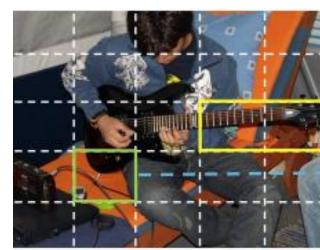
def Set_Similarity(X1, X2, a1, a2, b1, b2):

    D = distance_matrix(X1, X2)
    sim0 = Gumbel_Fit(D.min(0), a1, b1)
    sim1 = Gumbel_Fit(D.min(1), a2, b2)
    return sim0 + sim1
```

Performance

Few-shot Image Classification





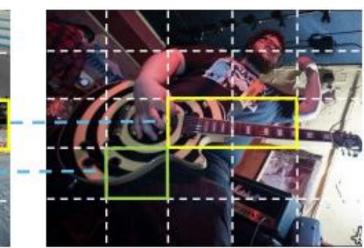


Fig 4. Visual matching results by (left) our GPS and (right) DeepEMD.

Method	miniImageNet		tieredImageNet	
	1-shot	5-shot	1-shot	5-shot
DeepEMD	63.36 ± 0.75	79.15 ± 0.66	70.48 ± 0.78	83.89 ± 0.67
CD	63.40 ± 0.46	79.54 ± 0.39	70.23 ± 0.64	84.01 ± 0.31
PWD	63.92 ± 0.77	78.77 ± 0.37	70.69 ± 0.92	83.88 ± 0.34
SWD	63.15 ± 0.76	78.46 ± 0.41	69.72 ± 0.93	83.02 ± 0.33
GSWD	63.66 ± 0.72	78.92 ± 0.47	70.25 ± 0.86	83.62 ± 0.31
ASWD	63.16 ± 0.75	78.87 ± 0.45	69.30 ± 0.91	83.71 ± 0.38
HyperCD	63.63 ± 0.65	79.78 ± 0.73	70.58 ± 0.81	84.27 ± 0.48
InfoCD	64.01 ± 0.32	80.87 ± 0.64	70.97 ± 0.59	84.54 ± 0.36
Ours: GPS	66.27±0.37	81.19±0.47	73.16±0.43	85.52±0.48

Tab.1 Results of 5-way (%) on minilmageNet and tieredImageNet datasets.

Point Cloud Completion

Fig 5. Row-1: Inputs of incomplete point clouds. Row-2: Outputs of Seedformer with CD. Row-3: Outputs of Seedformer with GPS. Row-4: Ground truth.