## **T2V2**

# A Unified Non-Autoregressive Model for Speech Recognition and Synthesis via Multitask Learning

Nabarun Goswami<sup>1</sup>, Hanqin Wang<sup>1</sup>, Tatsuya Harada<sup>1,2</sup>

<sup>1</sup>The University of Tokyo, Japan

<sup>2</sup>RIKEN, Japan

5 April 2025

## Acknowledgement

This work was partially supported by:

- JST Moonshot R&D Grant Number JPMJPS2011
- CREST Grant Number JPMJCR2015
- Basic Research Grant (Super AI) of Institute for AI and Beyond of the University of Tokyo.

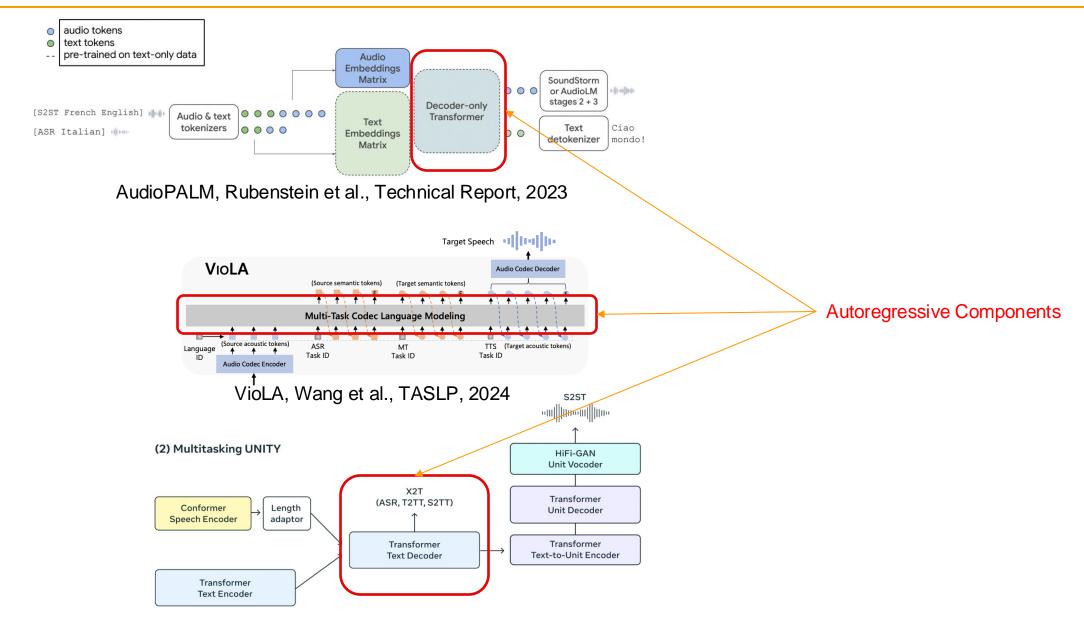
### Challenges:

- High latency in autoregressive (AR) models
- External alignment tools increase complexity in non-autoregressive (NAR) models
- Lack of unified representation limits cross-task improvements

#### Benefits of Unified ASR-TTS with Discrete Tokens:

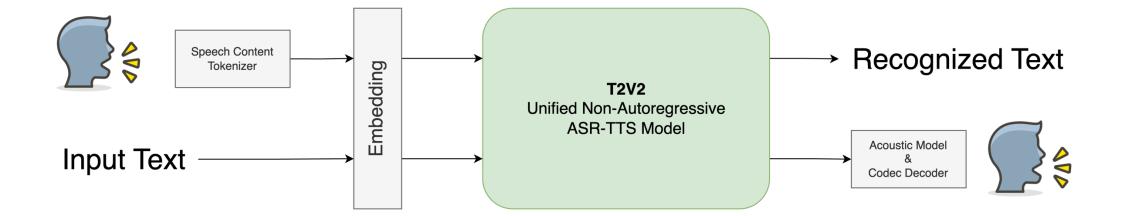
- Shared discrete representations improve efficiency and scalability
- Discrete tokens enable efficient storage, transmission, and improved sequence modeling
- Single efficient training process (both tasks typically trained on the same data)
- Dual-task modeling allows tasks to mutually aid and enhance each other's performance

### **Related Works in Discrete Unified ASR-TTS**



SeamlessM4T, Barrault et al., Technical Report, 2023

## **Overall Pipeline of T2V2**

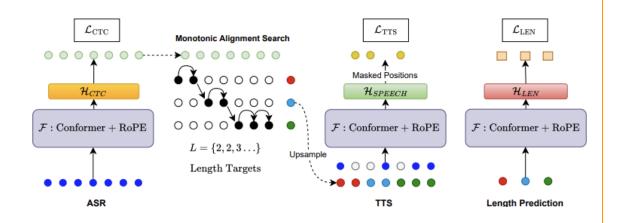


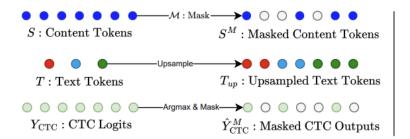
### **T2V2: Task Details**

#### **Core Tasks:**

Legend

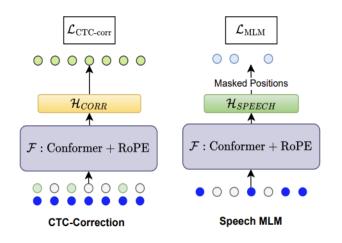
- ASR: CTC-based training
- TTS: Masked language modeling (MLM) with Monotonic Alignment Search (MAS) with intermediate CTC outputs.

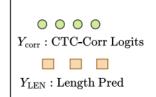




### **Auxiliary Tasks:**

- CTC Error Correction: Refines ASR outputs
- Unconditional Speech MLM: Enables classifier-free guidance for TTS





Model Architecture: Shared Conformer with RoPE + Task-specific Heads

 $Y_{\mathrm{speech}}[\mathcal{M}]: \mathrm{TTS}\ \mathrm{Logits}$ 

 $Y_{ ext{MLM}}[\mathcal{M}]: ext{MLM Logits}$ 

0 0

#### Loss Functions:

$$egin{aligned} \mathcal{L}_{ ext{CTC}} &= -\log \sum_{\mathbf{a} \in \mathcal{A}(T)} P(\mathbf{a} | \mathbf{Y}_{ ext{CTC}}) \ \\ \mathcal{L}_{ ext{TTS}} &= -\sum_{i \in \mathcal{M}} oldsymbol{S}_i \log P(\mathcal{H}_{ ext{SPEECH}}(\mathcal{F}(oldsymbol{X}_{ ext{TTS}}))_i) \end{aligned}$$

$$\mathcal{L}_{ ext{LEN}} = \sum_i |\mathcal{H}_{ ext{LEN}}(\mathcal{F}(m{T}))_i - \log(m{L}_i)|$$

$$\mathcal{L}_{ ext{CTC-corr}} = -\log \sum_{\mathbf{a} \in \mathcal{A}(T)} P(\mathbf{a}|Y_{ ext{corr}})$$

## **Key Innovations and Contributions**

### Unified Multitask Learning:

- First NAR unified model for ASR and TTS achieved via Multitask Learning
- Monotonic Alignment Search with Intermediate CTC outputs:
  - Self-contained alignment method, removing dependence on external tools

#### CTC Error Correction:

Addresses CTC independence limitation

#### Classifier-Free Guidance:

Improves robustness in TTS

## **Experimental Setup**

- Model Architecture: 6-layer Conformer (D=384, H=8, FF=1536, Ks=7)
- Additional Modules (pre-trained on LibriLight (60K hours)):
  - Content Tokenizer: HuBERT-Kmeans (1024 clusters, @50Hz)
  - Codec: Descript Audio Codec (12-layer RVQ @50Hz)
  - Acoustic Model (content → acoustic): SoundStorm
- Datasets:
  - Train: LibriHeavy (small: 500 hours, large: 50K hours)
  - Test:
    - **ASR**: Librispeech *test-clean*
    - TTS: 40 sentences from LibriSpeech test-clean, 20 speaker prompts from DAPS

### **Zero-Shot TTS Results**

Table 4: Zero-shot TTS performance comparison. Methods with \* indicate multilingual models. UD refers to Unpaired Data while PD refers to Paired Data in hours.

|                         | UD   | PD  | UTN    | 1OS  | CER  | SE     | CS     | IR-e  | 2e (s)     | IR-t2c (s)      |
|-------------------------|------|-----|--------|------|------|--------|--------|-------|------------|-----------------|
| Large scale paired data |      |     |        |      |      |        |        |       |            |                 |
| HierSpeech++*           | 500k |     |        |      |      |        |        |       | $\pm 0.00$ | -               |
| XTTS*                   | -    |     |        |      |      |        |        |       | $\pm 0.03$ | -               |
| WhisperSpeech           | 60k  | 60k | 3.95 ± | 0.11 | 0.66 | 0.93 : | ± 0.01 | 17.91 | $\pm 0.04$ | $2.84 \pm 0.01$ |
| Small scale paired data |      |     |        |      |      |        |        |       |            |                 |
| YourTTS*                | -    | 689 | 3.69 ± | 0.08 | 2.02 | 0.90 : | ± 0.02 | 0.11  | $\pm 0.00$ | -               |
| StyleTTS2               | 94k  | 245 | 4.43 ± | 0.03 | 1.59 | 0.91 : | ± 0.02 | 0.27  | $\pm 0.00$ | -               |
| Ours                    | 60k  | 500 | 4.43 ± | 0.02 | 0.55 | 0.94 : | ± 0.01 | 0.57  | $\pm 0.00$ | $0.06 \pm 0.00$ |

Table 5: Comparative MOS for Speech Quality (CMOS) and Speaker Similarity (SCMOS) on a scale  $\{-2, +2\}$ . p-value  $\leq 0.05$  indicate statistical significance.

|               | CMOS (p-value)            | SCMOS (p-value)                |
|---------------|---------------------------|--------------------------------|
| HierSpeech++  | $+0.10 \pm 0.25 (0.337)$  | +0.12 ± 0.26 (0.287)           |
| XTTS          | $-0.13 \pm 0.28  (0.418)$ | $-0.30 \pm 0.22 (0.007)$       |
| StyleTTS2     | $+0.16 \pm 0.25 (0.271)$  | $+0.14 \pm 0.24 (0.201)$       |
| WhisperSpeech | $-0.11 \pm 0.27  (0.490)$ | $-0.63 \pm 0.21 \ (1.5e^{-7})$ |
| Ours          | 0.00                      | 0.00                           |

State-of-the-Art UTMOS, CER, SECS

Significantly faster than AR baselines

State-of-the-Art CMOS, SCMOS

#### **Zero-Shot TTS Samples:**

**Text input:** Rodolfo meanwhile having returned home, and having missed the crucifix, guessed who had taken it, but gave himself no concern about it.

**Text input:** The railroads had not reached Jackson county, and wild game was plentiful on my father's farm on Big Creek near Lee's Summit.









Our Output

Speaker Prompt

Our Output

### **Discrete ASR Result**

Table 9: ASR results for models trained with punctuation and casing. The publicly released models for Zipformer-Transducer are used for the evaluation, while Conformer-CTC is trained by us.

|                                                                           | Libriheavy Subset | CER                | WER                 | IR (s)                                                                             |
|---------------------------------------------------------------------------|-------------------|--------------------|---------------------|------------------------------------------------------------------------------------|
| Non-discrete ASR (BPE encoding) Zipformer-Transducer Zipformer-Transducer | small<br>large    | 2.01   0.66        | 5.33<br>1.99        | 1.49 ± 0.07<br>1.51 ± 0.14                                                         |
| Discrete ASR (Byte Encoding) Conformer-CTC Ours                           | small<br>small    | <b>2.69</b>   2.71 | 8.28<br><b>8.27</b> | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                             |
| Conformer-CTC<br>Ours                                                     | large<br>large    | 1.53<br>1.31       | 4.36<br><b>4.09</b> | $\begin{array}{ c c c c c c }\hline 0.34 \pm 0.02 \\ 0.55 \pm 0.02 \\ \end{array}$ |

State-of-the-Art Discrete NAR ASR

Significantly faster than AR baselines

Performance gap with continuous AR baseline

Table 8: Individual error type improvements.

|          | Sub                 | Ins                 | Del                      |
|----------|---------------------|---------------------|--------------------------|
| w/o CORR | 1.300               | 0.090               | 0.140                    |
| w CORR   | <b>1.255</b> ↓3.46% | <b>0.082</b> ↓8.89% | 0.135<br>\$\psi_3.57\%\$ |

CTC Error Correction improves all types of errors

## **Ablation Study (TTS)**

Table 1: Zero-shot TTS ablation study for different tasks.

| Task Setting                                             | UTMOS                                                                           | CER  | SECS                                                                           |
|----------------------------------------------------------|---------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------|
| w SMLM, w CORR<br>w SMLM, w/o CORR<br>w/o SMLM, w/o CORR | $\begin{vmatrix} 4.39 \pm 0.04 \\ 4.41 \pm 0.04 \\ 4.39 \pm 0.03 \end{vmatrix}$ | 1.08 | $\begin{array}{c} 0.94 \pm 0.01 \\ 0.94 \pm 0.01 \\ 0.94 \pm 0.01 \end{array}$ |

Table 2: Zero-shot TTS ablation study for different number of iterations.

| Iters | UTMOS                                                 | CER  | SECS            |
|-------|-------------------------------------------------------|------|-----------------|
| 1     | $4.39 \pm 0.04$<br>$4.43 \pm 0.03$<br>$4.41 \pm 0.03$ | 0.95 | $0.94 \pm 0.01$ |
| 4     | $4.43 \pm 0.03$                                       | 1.12 | $0.94 \pm 0.01$ |
| 8     | $4.41 \pm 0.03$                                       | 1.23 | $0.94 \pm 0.01$ |

Table 3: TTS ablation study for CFG weight  $\lambda$ .

| $\lambda$ | UTMOS           | CER  | SECS            |
|-----------|-----------------|------|-----------------|
| 0.0       | $4.43 \pm 0.03$ | 1.12 | $0.94 \pm 0.01$ |
| 1.0       | $4.43 \pm 0.02$ | 0.55 | $0.94 \pm 0.01$ |
| 1.5       | $4.40 \pm 0.04$ | 0.95 | $0.94 \pm 0.01$ |
| 2.0       | $4.42 \pm 0.02$ | 0.69 | $0.94 \pm 0.01$ |

 Auxiliary tasks do not hamperTTS performance

 Increasing number of iterations increases quality but quickly saturates at 4 iterations

 CFG significantly improves robustness

## **Ablation Study (ASR)**

Table 6: ASR ablation study for different tasks.

|                                                          | CER                     | WER            |
|----------------------------------------------------------|-------------------------|----------------|
| w SMLM, w CORR<br>w SMLM, w/o CORR<br>w/o SMLM, w/o CORR | 2.732<br>2.949<br>2.886 | 9.428<br>9.120 |

Table 7: ASR ablation study for different correction thresholds and iterations.

| Corr. Thresh | Iters | CER  | WER  | IR(s)           |
|--------------|-------|------|------|-----------------|
| w/o CORR     | _     | 2.73 | 8.65 | $0.32 \pm 0.02$ |
| 0.8          | 1     | 2.73 | 8.44 | $0.40 \pm 0.03$ |
| 0.8          | 4     | 2.72 | 8.37 | $0.39 \pm 0.03$ |
| 0.8          | 8     | 2.72 | 8.33 | $0.42 \pm 0.03$ |
| 0.7          | 8     | 2.72 | 8.29 | $0.42 \pm 0.03$ |
| 0.7          | 16    | 2.71 | 8.27 | $0.47 \pm 0.03$ |
| 0.7          | 32    | 2.71 | 8.27 | $0.60 \pm 0.03$ |

 CTC-Correction task helps improve ASR performance

 Increasing number of iterations leads to improvement in ASR performance

### **Conclusion & Future Work**

#### **Conclusion:**

T2V2 effectively integrates ASR & TTS, leveraging multitask learning and discrete tokens.

#### **Limitations:**

Slightly underperforming continuous feature-based ASR, separate content-acoustic token translation for TTS.

#### **Ethical Considerations:**

High-quality synthetic speech achievable with short samples poses risks of misuse; we verified synthetic speech detectability by third-party detectors (e.g. <a href="https://detect.resemble.ai/">https://detect.resemble.ai/</a>)

#### **Future Directions:**

Extend framework to multi-lingual and code-switching scenarios, improve discrete ASR performance.

## Thank you!