

Prompt Videos

Learning Video-Conditioned Policy on Unlabelled Data with Joint Embedding Predictive Transformer

Hao Luo¹, and Zongqing Lu^{1,2}*

¹ School of Computer Science, Peking University ² Beijing Academy of Artificial Intelligence

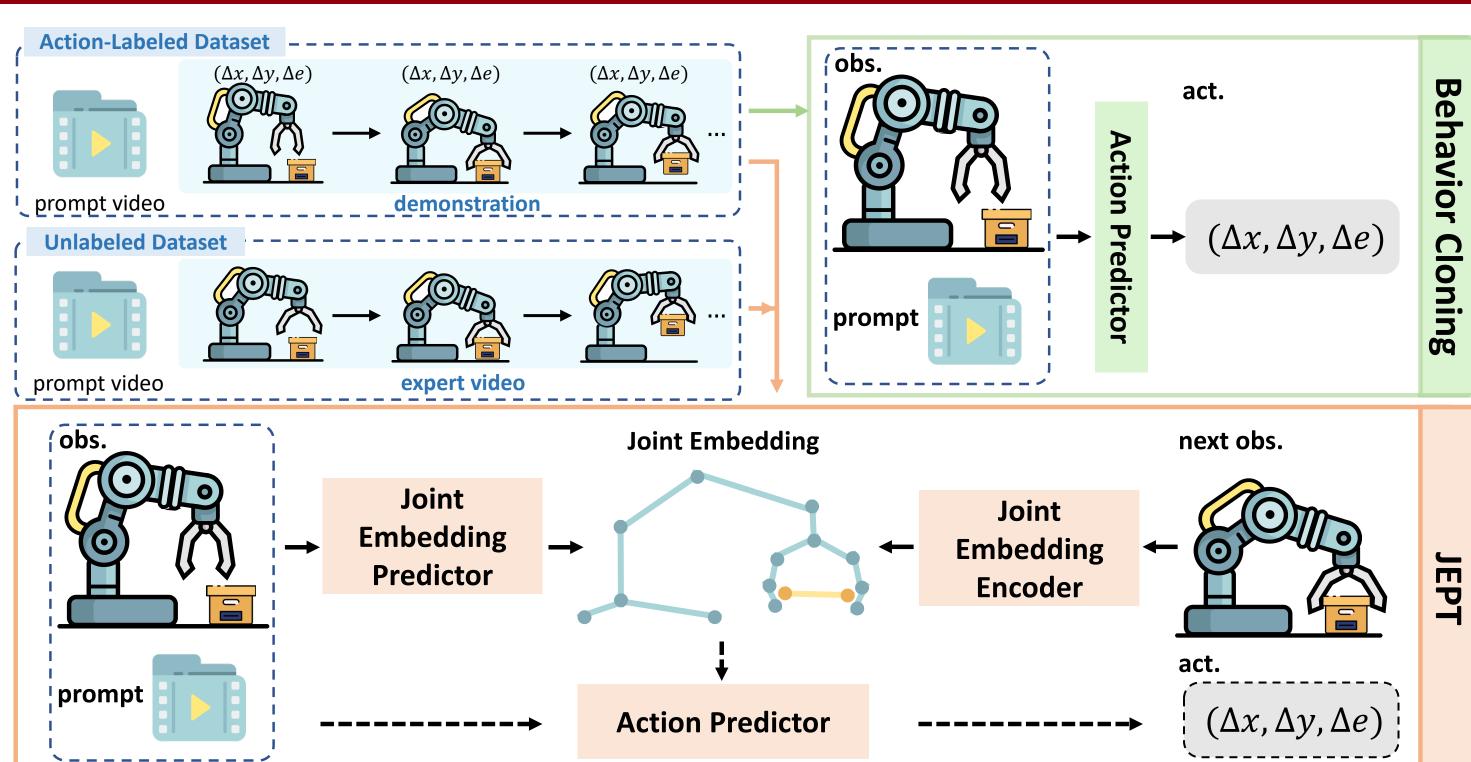
Background

Video-Conditioned Policy Learning

- A video-conditioned policy takes a prompt video depicting the task as a condition and executes the desired task in the dynamics encountered.
- Using a prompt video as a policy condition exhibits a better potential for flexibility and generalization on unseen tasks compared to other task specifications

Action-Labeled and Unlabeled Datasets Mixture

- ☐ Visual imitation learning requires a dataset of paired prompt videos and expert demonstrations with action labels.
- ☐ Try to alleviate the action annotation burden by additionally leveraging paired prompt videos and expert videos without action labels.



Method

Task Decomposition for Behavior Cloning

- Q1: How are the prompt videos supposed to manifest in the dynamics of the tasks?
- Q2: What actions are required to realize the given visual transitions?

Visual Transition Prediction

- ☐ To predict the **embeddings** of the **next observations**
- ☐ Visual transition is task-specific but is learnable from both action-labeled and unlabeled data.

Inverse Dynamics Learning

- ☐ To predict the action for the desired visual transition
- ☐ Inverse dynamics is learnable merely from the action-labeled but is universally applicable across tasks.

Joint Predictive Embedding

☐ Better abstract embeddings, better predictive generalization.

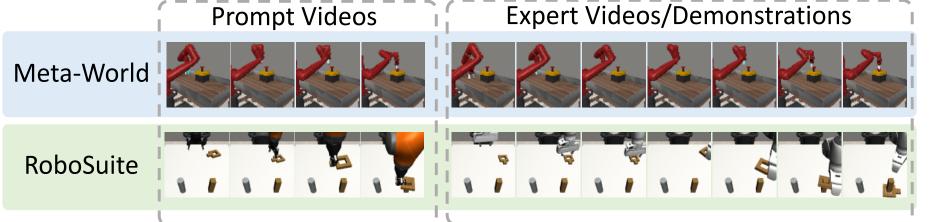
Joint Embedding Predictive Transformer

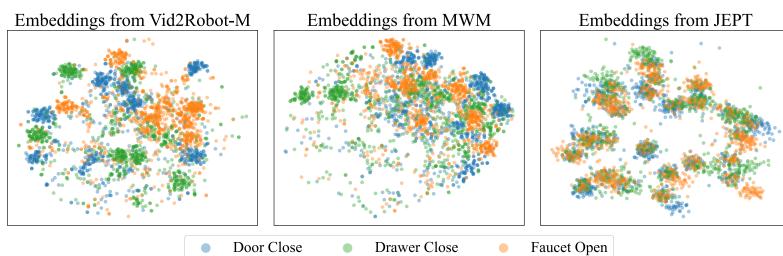
Visual Transition Loss: $\mathcal{L}_{\text{obs}} = \mathbb{E}_{(V,O) \sim \mathcal{D}_{\text{demo}} \cup \mathcal{D}_{\text{vid}}} \left[\frac{1}{k} \sum_{i=t-k+1}^{t} \left\| h_{i+1} - \hat{h}_{i+1} \right\|_{2} \right] \qquad \mathcal{L}_{\text{act}} = \mathbb{E}_{(V,O,A) \sim \mathcal{D}_{\text{demo}}} \left[\frac{1}{k} \sum_{i=t-k+1}^{t} a_{i} \log \hat{a}_{i} \right]$ Observation Tokens | Joint Embedding | Encoder | Joint Embedding | Joint | Jo

Expert Videos / Demonstrations

Main Experimental Results

Task	Vid2Robot-D	Vid2Robot-M	BC+IDM	JEPT+MWM	DT*	JEPT	Task	Vid2Robot-D	Vid2Robot-M	BC+IDM	JEPT+MWM	DT*	JEPT
${\cal T}_{ m demo}$	51.8	46.3	49.5	44.5	61.3	51.3	${\cal T}_{ m demo}$	26.8	20.7	26.7	24.3	36.3	27.2
${m \mathcal{T}}_{ m vid}$	4.7	28.7	8.3	21.3	13.0	31.7	${\cal T}_{ m vid}$	4.0	11.6	8.4	10.8	2.0	12.8
Handle Press	10.0	22.0	8.0	18.0	6.0	28.0	Panda Lift	4.0	16.0	6.0	22.0	8.0	38.0
Lever Pull	0.0	4.0	0.0	4.0	0.0	10.0	Sawyer Lift	0.0	2.0	0.0	6.0	0.0	16.0
Plate Slide Back	4.0	8.0	0.0	2.0	0.0	14.0	IIWA Lift	0.0	4.0	0.0	2.0	0.0	12.0
Faucet Open	4.0	14.0	4.0	14.0	0.0	22.0	UR5e Lift	0.0	0.0	0.0	0.0	0.0	8.0
Seen Average	28.2	37.5	28.9	32.9	37.1	41.5	Seen Average	15.5	16.1	17.5	17.6	19.2	20.1
Unseen Average	4.5	12.0	3.0	9.5	1.5	18.5	Unseen Average	1.0	5.5	1.5	7.5	2.0	18.5





- □ JEPT achieves **superior overall performance** and **better generalization** on unseen tasks compared with either direct visual imitation learning or conducting two subtasks with other embeddings.
- ☐ JEPT effectively leverages the mixture dataset to enhance the performance on the unlabeled and unseen tasks.
- ☐ JEPT learns more distributionally consistent embeddings compared with baselines.
- ☐ More ablations and analyses are available in the paper due to the limited space.