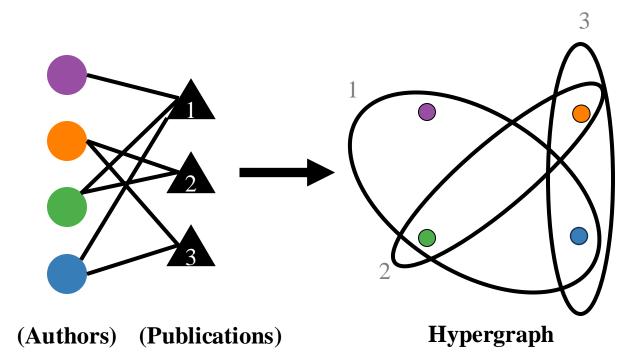
HyperPLR: Hypergraph Generation through Projection, Learning, and Reconstruction

Weihuang We, Tianshu Yu

Motivation

- Hypergraphs naturally capture **higher-order interactions**, which are crucial in domains like collaboration networks, biological systems, and drug modeling.
- Existing generative models focus on simple graphs or assume specific hypergraph structures, **limiting** expressiveness and generalizability.
- Goal: Build a general, scalable, and learnable framework to generate realistic hypergraphs.



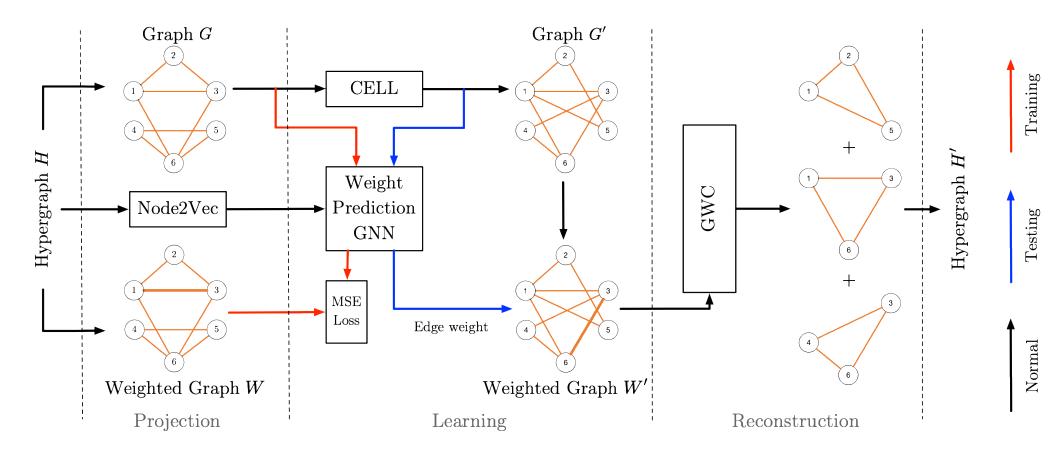
Our Contributions

In this paper, we propose **HyperPLR**, a novel framework for hypergraph generation, with the following key contributions:

- 1. Formulation of a new problem: We introduce the Weighted Clique Edge Cover (WCEC) problem for reconstructing hypergraphs from weighted projections, and propose a fast heuristic solution.
- 2. Unified three-stage framework: HyperPLR integrates Projection, Learning, and Reconstruction phases, enabling end-to-end generation of hypergraphs that preserve high-order structures.
- **3. Superior performance**: Extensive experiments on five real-world datasets demonstrate that HyperPLR outperforms state-of-the-art methods across multiple hypergraph-level and projection-level metrics.

HyperPRL Framework

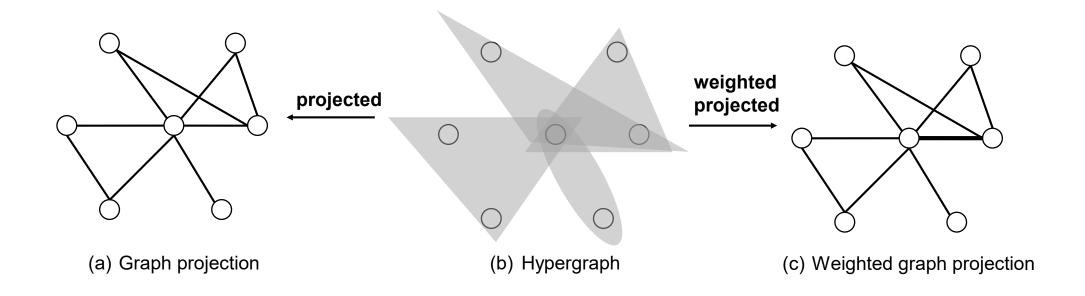
As shown, a high-level overview of the HyperPLR framework consists of three core blocks: **Projection**, **Learning**, and **Reconstruction**, acting in the presented order.



Hypergraph Projection

Graph Projection. A graph projection, or clique expansion of a hypergraph is a transformation process that converts a hypergraph into a traditional graph. Formally, if $\mathcal{H} = (V, \mathcal{E})$ is a hypergraph, the projection graph $G = \text{Proj}(\mathcal{H}) = (V, \mathcal{E}')$, where \mathcal{E}' consists all pairs $(v_i, v_i) \in e_i$ for hyperedge $e_i \in \mathcal{E}$.

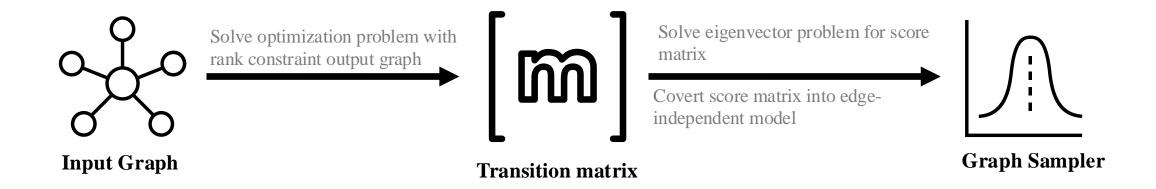
Weighted Graph Projection. The weighted graph projection preserve how frequently vertices co-occur within hyperedges. Formally, given a hypergraph $\mathcal{H} = (V, \mathcal{E})$, the weighted graph projection is to project \mathcal{H} into a weighted graph $G_w = \operatorname{Proj}_w(\mathcal{H}) = (V, \mathcal{E}, w)$. The w is a weight function that assigns a weight to each edge $e' \in \mathcal{E}'$.



Hypergraph Learning

Graph Structure Learning. HyperPLR employ CELL¹ to learn the pattern of the original graph projection and generate new projection. CELL is a graph generative model working in the spectral space by removing redundant computation from NetGAN².

Graph Weight Learning. HyperPLR extend CELL by providing predicted weights on the sampled edges, where the edge weight predictor is a GCN. During the training phase, this predictor takes the vertex embeddings $X^{(0)}$ and the adjacency matrix A as input, and outputs a set of new embedding $X^{(l)}$: $X^{(l)} = GCN(X^{(0)}, A)$, where l is the number of basic GCN layers. The loss is the MSE between the predicted weights $X^{(l)} \cdot X^{(l)}$.



Hypergraph Reconstruction

Reconstructing hypergraphs from their graph projections is a challenging task³. HyperPLR raises a novel **Weighted Clique Edge Cover (WCEC)** problem and an associated efficient algorithm Greedy Weighted Cover (GWC) in a hill-climbing manner.

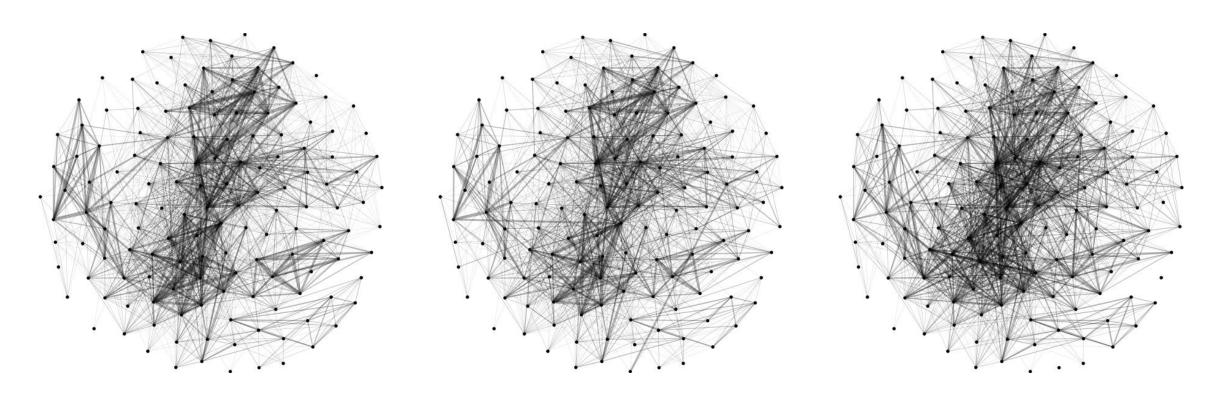
WCEC Problem: Given a weighted graph \mathcal{G} with weight matrix W, it asks to select k cliques from \mathcal{G} , such that the distance $d(W, W') \ge 0$ between W and W' is minimized, where weight matrix W' is derived from a new weighted graph \mathcal{G}' by stacking k selected cliques.

In our setting, we let d(W, W') be the L1-distance:

$$d(W, W') = \sum_{i=1}^{n} \sum_{j=1}^{n} |W_{ij} - W'_{ij}|.$$

where W_{ij} represents the entry of W at i-th row and j-th column.

Experiment Result in visualization



Original Graph Weighted Projection

Generating Graph Weighted Projection

Reconstructing Graph Weighted Projection

Experiment Result in graph metrics

	contact-high-school	contact-primary-school	email-Enron	email-Eu	NDC-classes
Diameter					
HyperDK00	0.500	0.333	0.500	0.667	0.778
HyperDK11	0.250	0.333	0.250	0.333	0.533
Hyperlap	0.200	0.067	0.250	0.333	0.422
Hyperlap+	0.250	0.333	0.050	0.133	0.289
TheRA	0.250	0.000	0.250	0.667	0.222
HyperPLR	0.250	0.000	0.000	0.033	0.000
Triangles number					
HyperDK00	167.117	21.456	41.427	156.738	184.785
HyperDK11	84.440	15.988	10.867	41.227	79.077
Hyperlap	0.599	0.409	3.315	8.998	3.536
Hyperlap+	0.942	0.284	1.517	2.981	2.124
TheRA	0.468	0.198	2.451	3.725	1.638
HyperPLR	0.316	0.354	0.055	0.742	0.281
degree distribution					
HyperDK00	23.026	23.026	23.026	23.026	23.026
HyperDK11	21.002	22.635	12.406	8.490	3.960
Hyperlap	5.958	8.072	9.294	6.946	4.415
Hyperlap+	5.336	8.812	9.023	6.448	4.474
TheRA	6.634	10.530	7.986	15.315	14.325
HyperPLR	5.065	7.657	4.639	7.424	4.020
Singular value distribution					
HyperDK00	6.212	5.730	4.653	6.422	6.750
HyperDK11	5.462	5.147	4.513	6.345	7.008
Hyperlap	5.369	5.043	4.470	6.293	6.589
Hyperlap+	5.372	5.056	4.520	6.319	6.560
TheRA	5.377	5.054	4.465	6.339	6.620
HyperPLR	5.347	5.032	4.451	6.278	6.432

References

- [1] NetGAN without GAN: From Random Walks to Low-Rank Approximations. ICML 2020.
- [2] NetGAN: Generating Graphs via Random Walks. ICML 2018.
- [3] From Graphs to Hypergraphs: Hypergraph Projection and its Remediation. ICLR 2024.
- [4] Simplicial closure and higher-order link prediction. PNAS 2018.

Thanks for your attention:)

Weihuang Wen

weihuangwen1@link.cuhk.edu.cn