Noise Separation guided Candidate Label Reconstruction for Noisy Partial Label Learning

Xiaorui Peng¹, Yuheng Jia^{2,3}, FuChao Yang¹, Ran Wang^{4,5}, Min-Ling Zhang^{2,6}

¹ College of Software Engineering, Southeast University

² School of Computer Science and Engineering, Southeast University

³Key Laboratory of New Generation Artificial Intelligence Technology and

Its Interdisciplinary Applications (Southeast University)

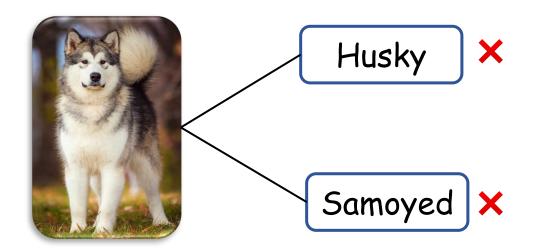
⁴Shenzhen Key Laboratory of Advanced Machine Learning and Applications,

School of Mathematical Sciences, Shenzhen University

⁵Guangdong Provincial Key Laboratory of Intelligent Information Processing, Shenzhen University

⁶Key Laboratory of Computer Network and Information Integration (Southeast University)

Noisy Partial Label Learning (NPLL)


Partial Label Learning (PLL)

- a set of candidate labels
- only one valid (unknown)

Malamute Husky Samoyed

Noisy Partial Label Learning (NPLL)

- a set of candidate labels
- only one valid or no one valid (unknown)

Motivation

Theorem 1. Assume the loss function $\mathcal{L}(f(x), y)$ is ρ -Lipschitz with respect to f(x) for all $y \in \mathcal{Y}$ and uppper-bounded by M. For noise rate $0 < \epsilon < 1$ and mean CLS size for normal samples $1 < \alpha < C$, for any $\delta > 0$, with probability at least $1 - \delta$, we have

$$R(\hat{f}) - R(f^*) \le 2\left(1 - \frac{1 - \epsilon}{\alpha}\right)M + 4\sqrt{2}\rho \sum_{y=1}^{C} \mathfrak{R}_n(\mathcal{H}_y) + 2M\sqrt{\frac{\log \frac{2}{\delta}}{2n}}.$$

The proof of Theorem 1 is provided in Appendix A.1. It can be observed that the generalization performance of \hat{f} is primarily influenced by three factors: the noise rate ϵ , the mean CLS size α of normal samples, and the sample size n. As $n \to \infty$, $\epsilon \to 0$ and $\alpha \to 1$, Theorem 1 shows that the generalized error bound will be reduced, and the empirical risk minimizer \hat{f} will get closer to the true risk minimizer f^* . Obviously, a smaller noise rate ϵ and a smaller CLS size α will bring better generalization performance.

The Proposed Method

$$\mathsf{Target}: \mathcal{D} = \left\{ (\boldsymbol{x_i}, Y_i) \right\}_{i=1}^n \implies \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \implies \min_{\theta} \quad \frac{1}{n} \sum_{i=1}^n \mathcal{L}_{PLL}(f(\boldsymbol{x_i}; \theta), \widehat{Y}_i), \; \stackrel{\bullet}{\mathsf{TOP}} = \mathcal{D}_{PLL}(f(\boldsymbol{x_i}; \theta), \; \stackrel{\bullet}{\mathsf{TOP}}), \; \stackrel{\bullet}{\mathsf{TOP}} = \mathcal{D}_{PLL}(f(\boldsymbol{x_i}; \theta), \; \stackrel{\bullet}{\mathsf{TOP}$$

Progressive Sample Separation

KNN-based pseudo label:

$$oldsymbol{q_i} = Normalize\left(\sum_{j \in N_i} s_{ij} oldsymbol{p_j}
ight)$$

CLS-based pseudo label:

$$\widetilde{m{q}}_{m{i}} = Normalize\left(m{p}_{m{i}}\odot m{S}(Y_i)
ight),$$

consistency error:

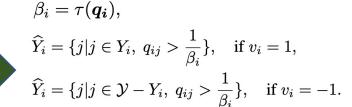
$$E_i = -\sum_{j=1}^{c} \widetilde{q}_{ij} \log q_{ij},$$

Sample Separation with moving threshold

$$v_i = \begin{cases} 1, & E_i \le l, \\ 0, & l < E_i \le u, \\ -1, & E_i > u, \end{cases}$$

Highly reliable normal samples

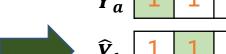
Uncertain samples


Highly reliable noisy samples

Reconstruction of Candidate Label Set

$$\min_{\widehat{Y}} \quad \sum_{i=1}^n I(v_i \neq 0) \left(|\widehat{Y}_i| - \beta \langle \boldsymbol{q_i}, \boldsymbol{S}(\widehat{Y}_i) \rangle \right),$$

s.t.
$$\forall i, \text{if } v_i = 1, \widehat{Y}_i \neq \varnothing, \widehat{Y}_i \subseteq Y_i,$$
 $\forall i, \text{if } v_i = -1, \widehat{Y}_i \neq \varnothing, \widehat{Y}_i \subseteq \mathcal{Y} - Y_i,$


$$c = \arg \max_{j \in \mathcal{Y} - Y_i} c' = \arg \min_{j \in Y_i} q_{ij}$$

$$\widehat{Y}_i = Y_i \cup \{c\} \setminus \{c'\}, \quad \text{if } v_i = 0,$$

- : Ground-truth label
- Y_a $\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \end{bmatrix}$
- Y_c $\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \end{bmatrix}$
 - $\mathcal{D} = \left\{ (\boldsymbol{x_i}, Y_i) \right\}_{i=1}^n$

1 : Candidate label 0 : Non-candidate label

- $\widehat{\boldsymbol{Y}}_{\boldsymbol{b}} \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}$
- $\widehat{Y}_c \boxed{0 \ 0 \ 0 \ 1 \ 1}$

$$\mathcal{D} = \left\{ (oldsymbol{x_i}, \widehat{Y}_i)
ight\}_{i=1}^n$$

The Proposed Method

$$\mathsf{Target}: \mathcal{D} = \left\{ (\boldsymbol{x_i}, Y_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \min_{\boldsymbol{\theta}} \quad \frac{1}{n} \sum_{i=1}^n \mathcal{L}_{PLL}(f(\boldsymbol{x_i}; \boldsymbol{\theta}), \widehat{Y}_i), \; \stackrel{\boldsymbol{\Phi}}{\text{TOP}} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{Y}_i) \right\}_{i=1}^n \quad \longrightarrow \quad \mathcal{D} = \left\{ (\boldsymbol{x_i}, \widehat{$$

Progressive Sample Separation

KNN-based pseudo label:

$$oldsymbol{q_i} = Normalize\left(\sum_{j \in N_i} s_{ij} oldsymbol{p_j}
ight)$$

CLS-based pseudo label:

$$\widetilde{m{q}}_{m{i}} = Normalize\left(m{p}_{m{i}}\odot m{S}(Y_i)
ight),$$

consistency error:

$$E_i = -\sum_{j=1}^{\sigma} \widetilde{q}_{ij} \log q_{ij},$$

Sample Separation with moving threshold

$$v_i = \begin{cases} 1, & E_i \le l, \\ 0, & l < E_i \le u, \\ -1, & E_i > u, \end{cases}$$

Highly reliable normal samples

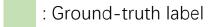
Uncertain samples

Highly reliable noisy samples

Reconstruction of Candidate Label Set

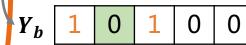
$$\min_{\widehat{Y}} \quad \sum_{i=1}^n I(v_i \neq 0) \left(|\widehat{Y}_i| - \beta \langle \boldsymbol{q_i}, \boldsymbol{S}(\widehat{Y}_i) \rangle \right),$$

s.t.
$$\forall i, \text{if } v_i = 1, \widehat{Y}_i \neq \varnothing, \widehat{Y}_i \subseteq Y_i,$$
 $\forall i, \text{if } v_i = -1, \widehat{Y}_i \neq \varnothing, \widehat{Y}_i \subseteq \mathcal{Y} - Y_i,$

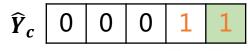

$$c = \arg\max_{j \in \mathcal{Y} - Y_i} c' = \arg\min_{j \in Y_i} q_{ij}$$

$$\widehat{Y}_i = Y_i \cup \{c\} \setminus \{c'\}, \quad \text{if } v_i = 0,$$

 $\widehat{Y}_i = \{j | j \in Y_i, \ q_{ij} > \frac{1}{\beta_i}\}, \quad \text{if } v_i = 1,$


 $\widehat{Y}_i = \{j | j \in \mathcal{Y} - Y_i, \ q_{ij} > \frac{1}{\beta_i} \}, \quad \text{if } v_i = -1.$

1 : Candidate label () : Non-candidate label


 $\beta_i = \tau(\boldsymbol{q_i}),$

$$\mathcal{Y}_c \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ \mathcal{D} = \{(\boldsymbol{x_i}, Y_i)\}_{i=1}^n \end{bmatrix}$$

$$\hat{\boldsymbol{Y}}_{b}$$
 1 1 0 0 0

$$\mathcal{D} = \left\{ (oldsymbol{x_i}, \widehat{Y}_i)
ight\}_{i=1}^n$$

The Proposed Method

$$\mathsf{Target}: \mathcal{D} = \{(\boldsymbol{x_i}, Y_i)\}_{i=1}^n \implies \mathcal{D} = \{(\boldsymbol{x_i}, \widehat{Y}_i)\}_{i=1}^n \implies \min_{\boldsymbol{\theta}} \quad \frac{1}{n} \sum_{i=1}^n \mathcal{L}_{PLL}(f(\boldsymbol{x_i}; \boldsymbol{\theta}), \widehat{Y}_i), \; \text{TOP} \}$$

Progressive Sample Separation

KNN-based pseudo label:

$$oldsymbol{q_i} = Normalize\left(\sum_{j \in N_i} s_{ij} oldsymbol{p_j}
ight)$$

CLS-based pseudo label:

$$\widetilde{m{q}}_{m{i}} = Normalize\left(m{p}_{m{i}}\odot m{S}(Y_i)
ight),$$

consistency error:

$$E_i = -\sum_{j=1}^{\sigma} \widetilde{q}_{ij} \log q_{ij},$$

Sample Separation with moving threshold

$$v_i = \begin{cases} 1, & E_i \le l, \\ 0, & l < E_i \le u, \\ -1, & E_i > u, \end{cases}$$

Highly reliable normal samples

Uncertain samples

Highly reliable noisy samples

Reconstruction of Candidate Label Set

$$\min_{\widehat{Y}} \quad \sum_{i=1}^n I(v_i \neq 0) \left(|\widehat{Y}_i| - \beta \langle \boldsymbol{q_i}, \boldsymbol{S}(\widehat{Y}_i) \rangle \right),$$

s.t.
$$\forall i, \text{if } v_i = 1, \widehat{Y}_i \neq \varnothing, \widehat{Y}_i \subseteq Y_i,$$
 $\forall i, \text{if } v_i = -1, \widehat{Y}_i \neq \varnothing, \widehat{Y}_i \subseteq \mathcal{Y} - Y_i,$

$$c = \arg\max_{j \in \mathcal{Y} - Y_i}$$
$$c' = \arg\min_{j \in Y_i} q_{ij}$$

$$eta_i = au(oldsymbol{q_i}),$$
 $egin{aligned} \widehat{Y}_i &= \{j|j \in Y_i, \; q_{ij} > rac{1}{eta_i}\}, & ext{if } v_i = 1, \end{aligned}$ $egin{aligned} \widehat{Y}_i &= \{j|j \in \mathcal{Y} - Y_i, \; q_{ij} > rac{1}{eta_i}\}, & ext{if } v_i = -1. \end{aligned}$

$$\widehat{Y}_i = Y_i \cup \{c\} \setminus \{c'\}, \quad ext{if } v_i = 0,$$

- : Ground-truth label
- 1 : Candidate label 0 : Non-candidate label

$$\mathcal{D} = \left\{ (\boldsymbol{x_i}, Y_i) \right\}_{i=1}^n$$

$$\widehat{Y}_c \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$\mathcal{D} = \left\{ (oldsymbol{x_i}, \widehat{Y}_i)
ight\}_{i=1}^n$$

Table 1: Accuracy comparisons on CIFAR10 and CIFAR100 under various ambiguity levels η and noise levels γ . Bold indicates the best result. Accuracies are presented in percentage (%) form. All experiments were conducted three times under the same three distinct random seeds.

					CIFAR10				
Method	$\eta = 0.3$		$\eta = 0.4$		$\eta = 0.5$				
	$\gamma = 0.2$	$\gamma = 0.3$	$\gamma = 0.4$	$\gamma = 0.2$	$\gamma = 0.3$	$\gamma = 0.4$	$\gamma = 0.2$	$\gamma = 0.3$	$\gamma = 0.4$
PRODEN [ICML'20]	77.74 ± 0.53	67.20 ± 0.99	57.74 ± 0.56	71.43 ± 0.54	59.28 ± 0.82	46.87 ± 1.40	63.94 ± 0.75	49.38 ± 1.13	32.03 ± 1.33
CC [NeurIPS'20]	75.09 ± 0.37	63.48 ± 1.72	54.42 ± 0.34	68.08 ± 0.94	54.46 ± 0.36	42.24 ± 1.31	58.22 ± 0.24	44.38 ± 1.60	28.57 ± 1.67
CRDPLL [IMCL'23]	84.61 ± 0.19	80.12 ± 0.46	71.43 ± 0.93	81.60 ± 0.46	72.79 ± 0.39	53.24 ± 2.30	76.92 ± 1.04	56.78 ± 0.76	32.60 ± 1.04
PaPi [CVPR'23]	89.80 ± 0.36	86.36 ± 1.06	78.45 ± 0.61	86.71 ± 0.65	81.78 ± 0.52	59.02 ± 1.67	86.34 ± 0.67	73.06 ± 1.16	47.16 ± 1.35
FREDIS [ICML'23]	92.09 ± 0.29	87.91 ± 1.74	84.15 ± 0.19	89.25 ± 2.18	84.78 ± 2.50	77.74 ± 0.70	88.10 ± 0.59	79.73 ± 2.70	52.68 ± 1.22
PiCO+ [TPAMI'24]	94.12 ± 0.35	94.22 ± 1.19	89.56 ± 0.52	93.84 ± 0.96	92.96 ± 0.92	85.94 ± 1.48	92.21 ± 0.66	89.63 ± 1.47	75.59 ± 1.32
	94.97 ± 0.27								
ALIM-Onehot [NeurIPS'23]									
Ours	96.91 ± 0.17	96.80 ± 0.14	96.47 ± 0.19	96.78 ± 0.10	96.23 ± 0.66	96.03 ± 0.56	96.55 ± 0.02	94.54 ± 1.84	82.63 ± 1.70
	CIFAR10				CIFAR 100				
					CHITHEIOO				
Method		$\eta = 0.03$	8		$\eta = 0.05$	9		$\eta = 0.1$	2 2
-	$\gamma=0.2$	$\gamma = 0.3$	$\gamma = 0.4$	$\gamma = 0.2$	$\eta = 0.05$ $\gamma = 0.3$	$\gamma = 0.4$	$\gamma=0.2$	$\gamma = 0.3$	$\gamma = 0.4$
Method PRODEN [ICML'20]		•	,		$\eta = 0.05$ $\gamma = 0.3$,		$\gamma = 0.3$	
-	57.83 ± 0.49	$\gamma = 0.3$	40.10 ± 0.37	55.39 ± 0.61	$\eta = 0.05$ $\gamma = 0.3$ 45.36 ± 1.16	36.11 ± 0.40	50.88 ± 1.12	$\gamma = 0.3$ 40.02 ± 1.40	28.81 ± 0.89
PRODEN [ICML'20]	57.83 ± 0.49 57.73 ± 0.70	$\gamma = 0.3$ 48.66 ± 0.31	$40.10 \pm 0.37 \\ 38.26 \pm 1.31$	55.39 ± 0.61 55.93 ± 0.70	$\eta = 0.05$ $\gamma = 0.3$ 45.36 ± 1.16 45.41 ± 1.23	36.11 ± 0.40 35.31 ± 0.07	50.88 ± 1.12 51.81 ± 0.36	$\gamma = 0.3$ 40.02 ± 1.40 40.69 ± 0.65	28.81 ± 0.89 28.56 ± 0.29
PRODEN [ICML'20] CC [NeurIPS'20]	57.83 ± 0.49 57.73 ± 0.70 63.91 ± 0.53	$\gamma = 0.3$ 48.66 ± 0.31 48.66 ± 0.28	$\begin{array}{c} 40.10 \pm 0.37 \\ 38.26 \pm 1.31 \\ 55.16 \pm 0.36 \end{array}$	55.39 ± 0.61 55.93 ± 0.70 63.02 ± 0.52	$\eta = 0.05$ $\gamma = 0.3$ 45.36 ± 1.16 45.41 ± 1.23 57.77 ± 0.48	36.11 ± 0.40 35.31 ± 0.07 53.64 ± 0.29	50.88 ± 1.12 51.81 ± 0.36 61.43 ± 0.21	$\gamma = 0.3$ 40.02 ± 1.40 40.69 ± 0.65 54.77 ± 0.05	28.81 ± 0.89 28.56 ± 0.29 48.50 ± 0.36
PRODEN [ICML'20] CC [NeurIPS'20] CRDPLL [IMCL'23]	57.83 ± 0.49 57.73 ± 0.70 63.91 ± 0.53 69.83 ± 0.57	$\gamma = 0.3$ 48.66 ± 0.31 48.66 ± 0.28 59.16 ± 0.14	40.10 ± 0.37 38.26 ± 1.31 55.16 ± 0.36 59.71 ± 0.68	55.39 ± 0.61 55.93 ± 0.70 63.02 ± 0.52 68.64 ± 0.61	$\begin{array}{c} \eta = 0.05 \\ \hline \gamma = 0.3 \\ 45.36 \pm 1.16 \\ 45.41 \pm 1.23 \\ 57.77 \pm 0.48 \\ 62.72 \pm 0.95 \end{array}$	36.11 ± 0.40 35.31 ± 0.07 53.64 ± 0.29 58.63 ± 0.25	50.88 ± 1.12 51.81 ± 0.36 61.43 ± 0.21 67.64 ± 0.56	$\begin{array}{c} \gamma = 0.3 \\ 40.02 \pm 1.40 \\ 40.69 \pm 0.65 \\ 54.77 \pm 0.05 \\ 61.98 \pm 0.70 \end{array}$	28.81 ± 0.89 28.56 ± 0.29 48.50 ± 0.36 55.60 ± 0.51
PRODEN [ICML'20] CC [NeurIPS'20] CRDPLL [IMCL'23] PaPi [CVPR'23]	$\begin{array}{c} 57.83 \pm 0.49 \\ 57.73 \pm 0.70 \\ 63.91 \pm 0.53 \\ 69.83 \pm 0.57 \\ 66.94 \pm 0.10 \end{array}$	$\gamma = 0.3$ 48.66 ± 0.31 48.66 ± 0.28 59.16 ± 0.14 61.99 ± 0.24	$\begin{array}{c} 40.10 \pm 0.37 \\ 38.26 \pm 1.31 \\ 55.16 \pm 0.36 \\ 59.71 \pm 0.68 \\ 57.99 \pm 0.35 \end{array}$	$\begin{array}{c} 55.39 \pm 0.61 \\ 55.93 \pm 0.70 \\ 63.02 \pm 0.52 \\ 68.64 \pm 0.61 \\ 67.48 \pm 0.57 \end{array}$	$\begin{array}{c} \eta = 0.05 \\ \gamma = 0.3 \\ 45.36 \pm 1.16 \\ 45.41 \pm 1.23 \\ 57.77 \pm 0.48 \\ 62.72 \pm 0.95 \\ 62.72 \pm 0.77 \end{array}$	36.11 ± 0.40 35.31 ± 0.07 53.64 ± 0.29 58.63 ± 0.25 57.19 ± 0.68	$\begin{array}{c} 50.88 \pm 1.12 \\ 51.81 \pm 0.36 \\ 61.43 \pm 0.21 \\ 67.64 \pm 0.56 \\ 66.09 \pm 0.42 \end{array}$	$\begin{array}{c} \gamma = 0.3 \\ 40.02 \pm 1.40 \\ 40.69 \pm 0.65 \\ 54.77 \pm 0.05 \\ 61.98 \pm 0.70 \\ 57.60 \pm 0.64 \end{array}$	$\begin{array}{c} 28.81 \pm 0.89 \\ 28.56 \pm 0.29 \\ 48.50 \pm 0.36 \\ 55.60 \pm 0.51 \\ 45.09 \pm 0.72 \end{array}$
PRODEN [ICML'20] CC [NeurIPS'20] CRDPLL [IMCL'23] PaPi [CVPR'23] FREDIS [ICML'23]	$\begin{array}{c} 57.83 \pm 0.49 \\ 57.73 \pm 0.70 \\ 63.91 \pm 0.53 \\ 69.83 \pm 0.57 \\ 66.94 \pm 0.10 \\ 74.32 \pm 0.43 \end{array}$	$\begin{array}{c} \gamma = 0.3 \\ 48.66 \pm 0.31 \\ 48.66 \pm 0.28 \\ 59.16 \pm 0.14 \\ 61.99 \pm 0.24 \\ 61.85 \pm 0.41 \end{array}$	$\begin{array}{c} 40.10 \pm 0.37 \\ 38.26 \pm 1.31 \\ 55.16 \pm 0.36 \\ 59.71 \pm 0.68 \\ 57.99 \pm 0.35 \\ 67.31 \pm 0.58 \end{array}$	$\begin{array}{c} 55.39 \pm 0.61 \\ 55.93 \pm 0.70 \\ 63.02 \pm 0.52 \\ 68.64 \pm 0.61 \\ 67.48 \pm 0.57 \\ 73.33 \pm 0.48 \end{array}$	$\begin{array}{c} \eta = 0.05 \\ \gamma = 0.3 \\ 45.36 \pm 1.16 \\ 45.41 \pm 1.23 \\ 57.77 \pm 0.48 \\ 62.72 \pm 0.95 \\ 62.72 \pm 0.77 \\ 70.17 \pm 0.62 \\ \end{array}$	$\begin{array}{c} 36.11 \pm 0.40 \\ 35.31 \pm 0.07 \\ 53.64 \pm 0.29 \\ 58.63 \pm 0.25 \\ 57.19 \pm 0.68 \\ 65.01 \pm 0.48 \end{array}$	$\begin{array}{c} 50.88 \pm 1.12 \\ 51.81 \pm 0.36 \\ 61.43 \pm 0.21 \\ 67.64 \pm 0.56 \\ 66.09 \pm 0.42 \\ 62.67 \pm 0.46 \end{array}$	$\begin{array}{c} \gamma = 0.3 \\ 40.02 \pm 1.40 \\ 40.69 \pm 0.65 \\ 54.77 \pm 0.05 \\ 61.98 \pm 0.70 \\ 57.60 \pm 0.64 \\ 56.25 \pm 0.84 \end{array}$	$\begin{array}{c} 28.81 \pm 0.89 \\ 28.56 \pm 0.29 \\ 48.50 \pm 0.36 \\ 55.60 \pm 0.51 \\ 45.09 \pm 0.72 \\ 47.75 \pm 1.08 \end{array}$
PRODEN [ICML'20] CC [NeurIPS'20] CRDPLL [IMCL'23] PaPi [CVPR'23] FREDIS [ICML'23] PiCO+ [TPAMI'24]	$\begin{array}{c} 57.83 \pm 0.49 \\ 57.73 \pm 0.70 \\ 63.91 \pm 0.53 \\ 69.83 \pm 0.57 \\ 66.94 \pm 0.10 \\ 74.32 \pm 0.43 \\ 76.39 \pm 0.71 \\ 76.29 \pm 0.19 \end{array}$	$\begin{array}{c} \gamma = 0.3 \\ 48.66 \pm 0.31 \\ 48.66 \pm 0.28 \\ 59.16 \pm 0.14 \\ 61.99 \pm 0.24 \\ 61.85 \pm 0.41 \\ 72.68 \pm 0.28 \\ 75.40 \pm 0.60 \end{array}$	$\begin{array}{c} 40.10 \pm 0.37 \\ 38.26 \pm 1.31 \\ 55.16 \pm 0.36 \\ 59.71 \pm 0.68 \\ 57.99 \pm 0.35 \\ 67.31 \pm 0.58 \\ 74.58 \pm 0.25 \\ 73.39 \pm 1.14 \end{array}$	$\begin{array}{c} 55.39 \pm 0.61 \\ 55.93 \pm 0.70 \\ 63.02 \pm 0.52 \\ 68.64 \pm 0.61 \\ 67.48 \pm 0.57 \\ 73.33 \pm 0.48 \\ 76.02 \pm 0.31 \\ 74.92 \pm 0.48 \end{array}$	$\begin{array}{c} \eta = 0.05 \\ \hline \gamma = 0.3 \\ 45.36 \pm 1.16 \\ 45.41 \pm 1.23 \\ 57.77 \pm 0.48 \\ 62.72 \pm 0.95 \\ 62.72 \pm 0.77 \\ 70.17 \pm 0.62 \\ 75.33 \pm 0.14 \\ 74.40 \pm 0.06 \\ \end{array}$	36.11 ± 0.40 35.31 ± 0.07 53.64 ± 0.29 58.63 ± 0.25 57.19 ± 0.68 65.01 ± 0.48 74.49 ± 0.69 71.49 ± 1.02	$\begin{array}{c} 50.88 \pm 1.12 \\ 51.81 \pm 0.36 \\ 61.43 \pm 0.21 \\ 67.64 \pm 0.56 \\ 66.09 \pm 0.42 \\ 62.67 \pm 0.46 \\ 75.27 \pm 0.22 \\ 61.24 \pm 0.57 \end{array}$	$\begin{array}{c} \gamma = 0.3 \\ 40.02 \pm 1.40 \\ 40.69 \pm 0.65 \\ 54.77 \pm 0.05 \\ 61.98 \pm 0.70 \\ 57.60 \pm 0.64 \\ 56.25 \pm 0.84 \\ 71.06 \pm 1.41 \\ 58.01 \pm 1.03 \\ \end{array}$	$\begin{array}{c} 28.81 \pm 0.89 \\ 28.56 \pm 0.29 \\ 48.50 \pm 0.36 \\ 55.60 \pm 0.51 \\ 45.09 \pm 0.72 \\ 47.75 \pm 1.08 \\ 64.61 \pm 2.37 \\ 47.27 \pm 1.82 \end{array}$

Table 2: Accuracy comparisons when the methods are used as a plug-in on CIFAR10 and CIFAR100 under various ambiguity levels η and noise levels γ . Bold indicates the best result. Accuracies are presented in percentage (%) form.

					CIFAR10				-
Method		$\eta = 0.3$			$\eta = 0.4$			$\eta = 0.5$	
	$\gamma = 0.2$	$\gamma = 0.3$	$\gamma = 0.4$	$\gamma = 0.2$	$\gamma = 0.3$	$\gamma = 0.4$	$\gamma = 0.2$	$\gamma = 0.3$	$\gamma = 0.4$
PRODEN	78.00	67.57	57.75	71.31	60.22	48.38	64.62	49.95	31.93
PRODEN + ALIM-Onehot	90.83	88.64	84.87	89.15	84.95	77.71	86.63	79.89	42.83
PRODEN + ALIM-Scale	92.05	89.83	83.22	90.58	85.78	71.27	87.10	66.34	38.14
PRODEN + Ours	94.35	94.10	93.30	94.21	93.80	90.48	94.00	93.27	62.29
CRDPLL	84.40	79.61	71.46	81.97	72.43	55.06	76.93	56.40	31.96
CRDPLL + ALIM-Onehot	88.30	83.64	74.21	86.12	77.04	56.58	80.75	60.72	32.95
CRDPLL + ALIM-Scale	92.06	90.42	85.86	90.81	85.36	73.85	87.06	68.57	40.50
CRDPLL + Ours	95.29	95.25	94.86	95.17	94.44	90.43	94.28	83.40	54.66
PaPi	69.83	61.99	59.71	68.64	62.72	58.63	67.64	61.98	55.60
PaPi + ALIM-Onehot	95.64	94.88	92.57	95.67	94.26	91.01	94.45	90.50	66.50
PaPi + ALIM-Scale	95.11	94.40	92.32	95.94	94.15	90.25	93.24	88.41	58.92
PaPi + Ours	96.74	96.67	96.41	96.84	95.47	95.39	96.53	95.41	81.85
		-		•	CIFAR100		-		
Method		$\eta = 0.03$			$\eta = 0.05$			$\eta = 0.1$	
	$\gamma = 0.2$	$\gamma = 0.3$	$\gamma = 0.4$	$\gamma = 0.2$	$\gamma = 0.3$	$\gamma = 0.4$	$\gamma = 0.2$	$\gamma = 0.3$	$\gamma = 0.4$
PRODEN	58.10	48.98	40.30	54.89	46.60	35.85	51.87	41.63	29.84
PRODEN + ALIM-Onehot	74.07	71.18	68.26	72.47	69.76	66.36	68.17	62.33	53.44
PRODEN + ALIM-Scale	74.98	73.50	69.05	74.49	72.14	66.88	70.64	64.17	55.10
PRODEN + Ours	75.66	74.59	72.29	75.08	73.68	70.19	74.74	69.93	61.47
CRDPLL	64.36	59.01	55.20	62.45	58.26	53.37	61.26	54.72	48.69
CRDPLL + ALIM-Onehot	68.31	63.70	57.20	67.21	64.24	55.37	67.09	62.28	50.19
CRDPLL + ALIM-Scale	70.93	67.99	58.60	70.09	67.30	57.43	68.24	63.03	53.74
CRDPLL + Ours	74.46	72.93	69.96	73.58	72.39	68.19	72.27	69.55	66.16
PaPi	69.83	61.99	59.71	68.64	62.72	58.63	67.64	61.98	55.60
PaPi + ALIM-Onehot	80.37	79.20	77.58	79.64	78.14	76.08	77.77	74.04	58.63
PaPi + ALIM-Scale	81.50	80.23	78.77	80.51	78.79	77.11	79.16	75.86	63.02
PaPi + Ours	81.70	80.69	80.08	80.85	79.88	79.29	79.78	78.23	78.10

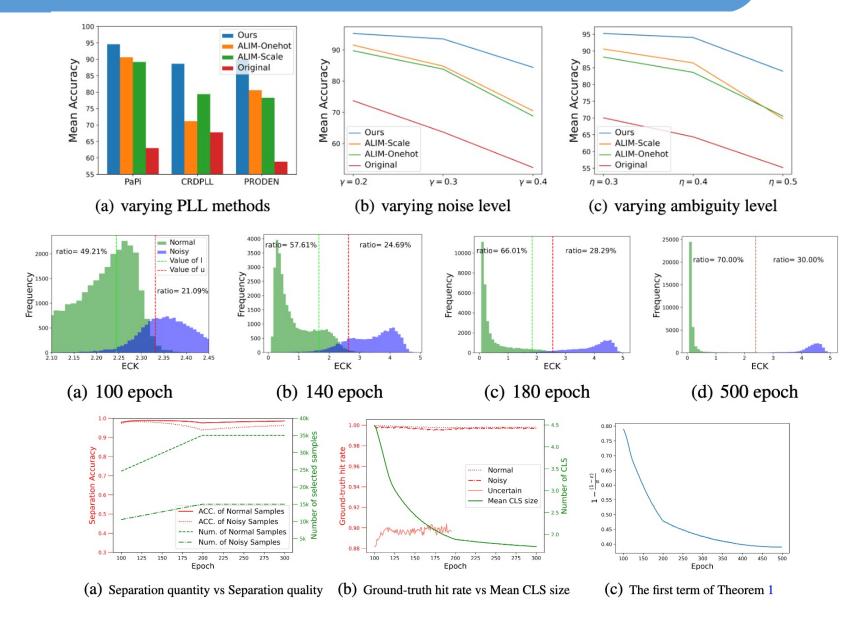


Table 3: Accuracies (%) on fine-grained datasets.

	CIFAR100H	CUB-200	Flower
Method	$\eta = 0.5$	$\eta = 0.03$	$\eta = 0.05$
	$\gamma = 0.2$	$\gamma = 0.3$	$\gamma = 0.2$
PaPi	63.94	43.56	74.95
PaPi + ALIM-Onehot	69.29	48.58	76.07
PaPi + ALIM-Scale	74.34	51.44	78.47
PaPi + Ours	76.93	52.78	81.72

Table 4: Accuracies (%) on real-world datasets.

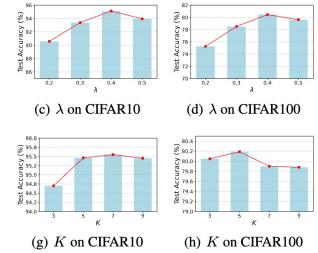

Method\Dataset	Treeversity2	Treeversity3	Benthic2#
Papi	81.07	82.55	80.90
PaPi + ALIM-Scale	82.72	83.47	81.46
PaPi + ALIM-Onehot	84.54	86.01	82.24
PaPi + Ours	86.41	86.67	83.47

Table 7: The separation accuracy of **normal/noisy samples** for each NPLL method.

Method\Dataset	CIFAR10 (γ =0.2, η =0.5)	CIFAR10 (γ =0.3, η =0.5)	CIFAR10 (γ =0.4, η =0.5)
PiCO+	99.21%/48.90%	96.25%/69.14%	83.92%/76.11%
ALIM-Onehot	98.53%/94.44%	97.31%/93.36%	86.80%/79.33%
Ours	99.35%/97.85%	98.91%/97.08%	92.68%/88.05%

Table 5: Ablation study of our method (%).

D ₂		
	CIFAR10	CIFAR100
Method	$\eta=0.5$	$\eta = 0.05$
	$\gamma = 0.3$	$\gamma = 0.3$
Ours	95.41	79.88
Ours v1	94.09	78.68
Ours v2	95.39	75.16
Ours v3	81.32	74.62
Papi	61.98	62.72

THANKS

Email: xiaorui@seu.edu.cn