Efficient Model Editing with Task-localized Sparse Fine-tuning

Leonardo Iurada¹, Marco Ciccone², Tatiana Tommasi¹

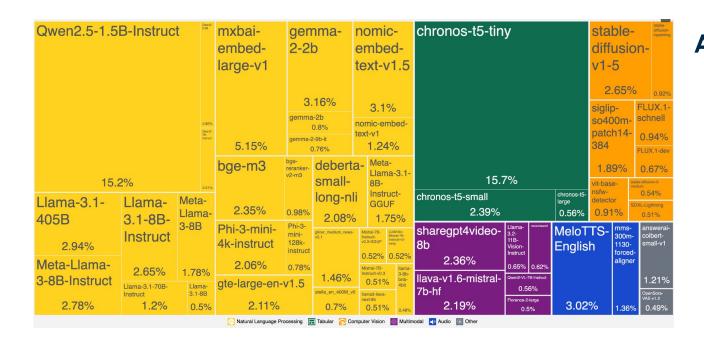
¹Politecnico di Torino, Italy ²Vector Institute, Toronto, Canada

Poster Session 2

Thursday, April 24th, 2025 3:00pm - 5:30pm

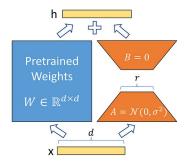
Context: The Democratization of Al

Top Pre-trained Models Downloads from Hugging Face (until 2024)

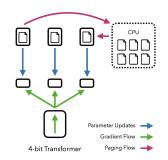


Adapted with:

PEFT (eg. LoRA, <u>Hu et al., 2022</u>)



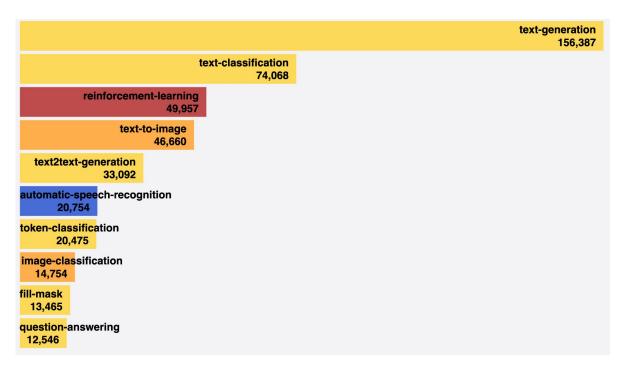
Quantization (eg. QLoRA, <u>Dettmers et al., 2023)</u>



Context: The Democratization of Al

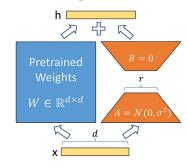
Top Tasks on which Pre-trained Models are fine-tuned and openly shared

Over the last 33 months, more than 1.1M models have been created for many specialized tasks.

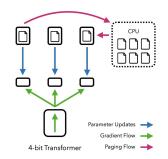


Adapted with:

PEFT (eg. LoRA, <u>Hu et al., 2022</u>)

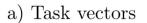


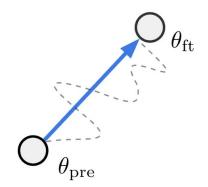
Quantization (eg. QLoRA, <u>Dettmers et al., 2023)</u>



Task arithmetic desiderata:

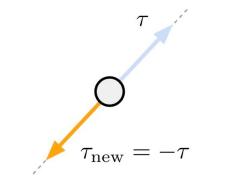
- Task-specific knowledge (eg. Math, Coding...) are encoded in "Task Vectors"
- Simple arithmetic operations (+, -) with task vectors steer the model's behavior





$$\tau = \theta_{\rm ft} - \theta_{\rm pre}$$

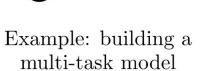
b) Forgetting via negation



Example: making a language model produce less toxic content

c) Learning via addition

$$au_{\text{new}} = au_A + au_B$$
 au_A

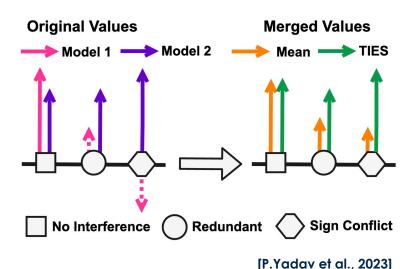


[G.Ilharco et al., 2023]

 τ_B

CHALLENGE: Collaboration in decentralized settings is hard...

Interference between task vectors when combined ⇒ unintended model behavior!



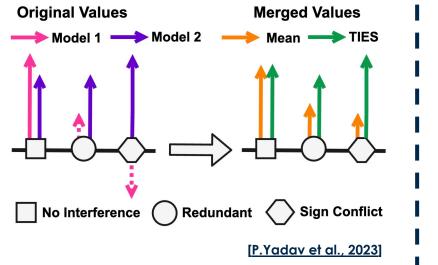
CHALLENGE: Collaboration in decentralized settings is hard...

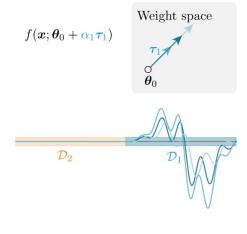
Interference between task vectors when combined ⇒ unintended model behavior!

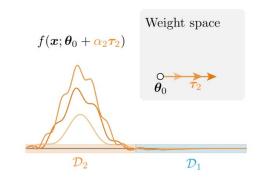
IDEA: when fine-tuning to derive task vectors...

"data from distinct regions in input space affect non-overlapping regions of the activation space"

Weight Disentanglement property (⇒ emerges from extensive pre-training)









CHALLENGE: Collaboration in decentralized settings is hard...

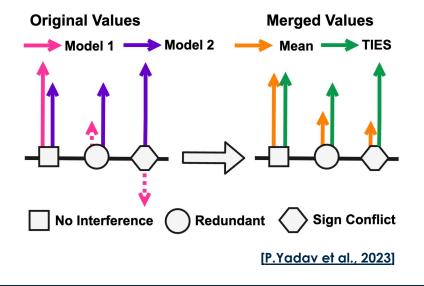
Interference between task vectors when combined ⇒ unintended model behavior!

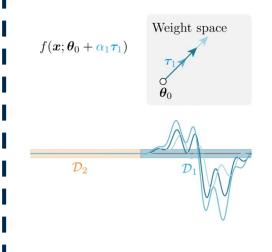
IDEA: when fine-tuning to derive task vectors...

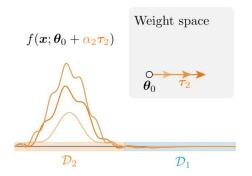
"data from distinct regions in input space affect non-overlapping regions of the activation space"

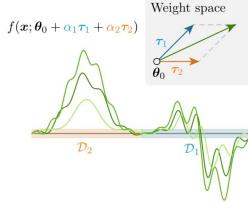
Weight Disentanglement property (⇒ emerges from extensive pre-training)

QUESTION: How to preserve Weight Disentanglement when deriving task vectors via fine-tuning?









[G.Ortiz-Jimenez et al., 2023]

Formally, Weight Disentanglement (WD) is defined as:

$$f\left(\boldsymbol{x},\boldsymbol{\theta}_{0} + \sum_{t=1}^{T} \alpha_{t} \boldsymbol{\tau}_{t}\right) = f(\boldsymbol{x},\boldsymbol{\theta}_{0}) \mathbb{1}\left(\boldsymbol{x} \notin \bigcup_{t=1}^{T} \mathcal{D}_{t}\right) + \sum_{t=1}^{T} f(\boldsymbol{x},\boldsymbol{\theta}_{0} + \alpha_{t} \boldsymbol{\tau}_{t}) \mathbb{1}(\boldsymbol{x} \in \mathcal{D}_{t})$$
$$= g_{0}(\boldsymbol{x}) + \sum_{t=1}^{T} g_{t}(\boldsymbol{x}, \alpha_{t} \boldsymbol{\tau}_{t}).$$

Formally, Weight Disentanglement (WD) is defined as:

$$f\left(\boldsymbol{x},\boldsymbol{\theta}_{0} + \sum_{t=1}^{T} \alpha_{t} \boldsymbol{\tau}_{t}\right) = f(\boldsymbol{x},\boldsymbol{\theta}_{0}) \mathbb{1}\left(\boldsymbol{x} \notin \bigcup_{t=1}^{T} \mathcal{D}_{t}\right) + \sum_{t=1}^{T} f(\boldsymbol{x},\boldsymbol{\theta}_{0} + \alpha_{t} \boldsymbol{\tau}_{t}) \mathbb{1}(\boldsymbol{x} \in \mathcal{D}_{t})$$

$$= g_{0}(\boldsymbol{x}) + \sum_{t=1}^{T} g_{t}(\boldsymbol{x},\alpha_{t} \boldsymbol{\tau}_{t}). \qquad f\left(\boldsymbol{x},\boldsymbol{\theta}_{0} + \sum_{t=1}^{T} \alpha_{t} \boldsymbol{\tau}_{t}\right) = f(\boldsymbol{x},\boldsymbol{\theta}_{0} + \alpha_{t} \boldsymbol{\tau}_{t}), \quad \forall \boldsymbol{x} \in \mathcal{D}_{t}$$

... meaning that:

• inference on ${m x} \in {\mathcal D}_t \Rightarrow {\sf only}\, f(\cdot, {m heta}_0 + lpha_t {m au}_t)$ must activate

Formally, Weight Disentanglement (WD) is defined as:

$$f\left(\boldsymbol{x},\boldsymbol{\theta}_{0} + \sum_{t=1}^{T} \alpha_{t} \boldsymbol{\tau}_{t}\right) = f(\boldsymbol{x},\boldsymbol{\theta}_{0}) \mathbb{1}\left(\boldsymbol{x} \notin \bigcup_{t=1}^{T} \mathcal{D}_{t}\right) + \sum_{t=1}^{T} f(\boldsymbol{x},\boldsymbol{\theta}_{0} + \alpha_{t} \boldsymbol{\tau}_{t}) \mathbb{1}(\boldsymbol{x} \in \mathcal{D}_{t})$$

$$= g_{0}(\boldsymbol{x}) + \sum_{t=1}^{T} g_{t}(\boldsymbol{x},\alpha_{t} \boldsymbol{\tau}_{t}). \qquad f\left(\boldsymbol{x},\boldsymbol{\theta}_{0} + \sum_{t=1}^{T} \alpha_{t} \boldsymbol{\tau}_{t}\right) = f(\boldsymbol{x},\boldsymbol{\theta}_{0}), \quad \forall \boldsymbol{x} \notin \mathcal{D}$$

... meaning that:

- inference on ${m x} \in \mathcal{D}_t \Rightarrow \mathsf{only}\, f(\cdot, {m heta}_0 + lpha_t {m au}_t)$ must activate
- ullet inference on $oldsymbol{x}
 otin \mathcal{D}$ \Rightarrow must fall back to base pre-trained behavior

Formally, Weight Disentanglement (WD) is defined as:

$$f\left(\boldsymbol{x},\boldsymbol{\theta}_{0} + \sum_{t=1}^{T} \alpha_{t} \boldsymbol{\tau}_{t}\right) = f(\boldsymbol{x},\boldsymbol{\theta}_{0}) \mathbb{1}\left(\boldsymbol{x} \notin \bigcup_{t=1}^{T} \mathcal{D}_{t}\right) + \sum_{t=1}^{T} f(\boldsymbol{x},\boldsymbol{\theta}_{0} + \alpha_{t} \boldsymbol{\tau}_{t}) \mathbb{1}(\boldsymbol{x} \in \mathcal{D}_{t})$$
$$= g_{0}(\boldsymbol{x}) + \sum_{t=1}^{T} g_{t}(\boldsymbol{x}, \alpha_{t} \boldsymbol{\tau}_{t}).$$

... meaning that:

- inference on $m{x} \in \mathcal{D}_t \Rightarrow \mathsf{only}\, f(\cdot, m{ heta}_0 + lpha_t m{ au}_t)$ must activate
- ullet inference on $oldsymbol{x}
 otin \mathcal{D}$ \Rightarrow must fall back to base pre-trained behavior
- \rightarrow <u>Previous works</u>: "enforce" (hope) WD preservation via explicit network linearization, i.e. fine-tuning:

$$f_{ ext{lin}}\left(oldsymbol{x}, oldsymbol{ heta}_0 + \sum_{t=1}^T lpha_t oldsymbol{ au}_t
ight) = f(oldsymbol{x}, oldsymbol{ heta}_0) + \sum_{t=1}^T lpha_t oldsymbol{ au}_t^ op
abla_{oldsymbol{ heta}} f(oldsymbol{x}, oldsymbol{ heta}_0)$$

Formally, Weight Disentanglement (WD) is defined as:

$$f\left(\boldsymbol{x},\boldsymbol{\theta}_{0} + \sum_{t=1}^{T} \alpha_{t} \boldsymbol{\tau}_{t}\right) = f(\boldsymbol{x},\boldsymbol{\theta}_{0}) \mathbb{1}\left(\boldsymbol{x} \notin \bigcup_{t=1}^{T} \mathcal{D}_{t}\right) + \sum_{t=1}^{T} f(\boldsymbol{x},\boldsymbol{\theta}_{0} + \alpha_{t} \boldsymbol{\tau}_{t}) \mathbb{1}(\boldsymbol{x} \in \mathcal{D}_{t})$$
$$= g_{0}(\boldsymbol{x}) + \sum_{t=1}^{T} g_{t}(\boldsymbol{x}, \alpha_{t} \boldsymbol{\tau}_{t}).$$

... meaning that:

- inference on $m{x} \in \mathcal{D}_t \Rightarrow \mathsf{only}\, f(\cdot, m{ heta}_0 + lpha_t m{ au}_t)$ must activate
- inference on $oldsymbol{x}
 otin \mathcal{D} \Rightarrow$ must fall back to base pre-trained behavior
- \rightarrow <u>Previous works</u>: "enforce" (hope) WD preservation via explicit network linearization, i.e. fine-tuning:

$$f_{\text{lin}}\left(\boldsymbol{x},\boldsymbol{\theta}_{0}+\sum_{t=1}^{T}\alpha_{t}\boldsymbol{\tau}_{t}\right)=f(\boldsymbol{x},\boldsymbol{\theta}_{0})+\sum_{t=1}^{T}\underline{\alpha_{t}\boldsymbol{\tau}_{t}^{\top}\nabla_{\boldsymbol{\theta}}f(\boldsymbol{x},\boldsymbol{\theta}_{0})}\quad \begin{array}{c} \textbf{Doesn't consider} \\ \textbf{Localization!} \end{array}$$

Imposing Function Localization

To exactly have WD on linearized networks:

$$f(\boldsymbol{x}, \boldsymbol{\theta}_0 + \alpha_t \boldsymbol{ au}_t) pprox f_{ ext{lin}}(\boldsymbol{x}, \boldsymbol{\theta}_0 + \alpha_t \boldsymbol{ au}_t) = f(\boldsymbol{x}, \boldsymbol{\theta}_0) + \alpha_t \boldsymbol{ au}_t^{ op} \nabla_{\boldsymbol{\theta}} f(\boldsymbol{x}, \boldsymbol{\theta}_0)$$

- ... we must ensure that each $m{ au}_t
 abla_{m{ heta}} f(m{x}, m{ heta}_0)
 eq 0$ only for $m{x} \in \mathcal{D}_t$
- ⇒ Formally, (Function Localization Constraints):

$$orall oldsymbol{x} \in \mathcal{D}_{t'
eq t}, \ oldsymbol{ au}_t^ op
abla_{oldsymbol{ heta}} f(oldsymbol{x}, oldsymbol{ heta}_0) = 0$$

Imposing Function Localization

To exactly have WD on linearized networks:

$$f(\boldsymbol{x}, \boldsymbol{\theta}_0 + \alpha_t \boldsymbol{\tau}_t) \approx f_{\text{lin}}(\boldsymbol{x}, \boldsymbol{\theta}_0 + \alpha_t \boldsymbol{\tau}_t) = f(\boldsymbol{x}, \boldsymbol{\theta}_0) + \alpha_t \boldsymbol{\tau}_t^{\top} \nabla_{\boldsymbol{\theta}} f(\boldsymbol{x}, \boldsymbol{\theta}_0)$$

... we must ensure that each $m{ au}_t
abla_{m{ heta}} f(m{x}, m{ heta}_0)
eq 0$ only for $m{x} \in \mathcal{D}_t$

⇒ Formally, (<u>Function Localization Constraints</u>):

$$orall oldsymbol{x} \in \mathcal{D}_{t'
eq t}, \ oldsymbol{ au}_t^ op
abla_{oldsymbol{ heta}} f(oldsymbol{x}, oldsymbol{ heta}_0) = 0$$

PROBLEM: We can't access $\mathcal{D}_{t'
eq t}$ (we only have $m{x} \in \mathcal{D}_t$, <u>isolated decentralized setting!</u>)

Deriving Weight-Disentangled Task Vectors

- \Rightarrow EMPIRICALLY: <u>least sensitive</u> weights ($abla_{m{ heta}_{[i]}}f(m{x},m{ heta}_0)pprox 0$) are least sensitive for all tasks!
- So, for the least sensitive weights, the Constraints are $orall m{x} \in \mathcal{D}_t, \ m{ au}_t^ op
 abla_{m{ heta}} f(m{x}, m{ heta}_0)$

Deriving Weight-Disentangled Task Vectors

- \Rightarrow EMPIRICALLY: <u>least sensitive</u> weights ($abla_{m{ heta}_{[i]}}f(m{x},m{ heta}_0)pprox 0$) are least sensitive for all tasks!
- So, for the least sensitive weights, the Constraints are $orall m{x} \in \mathcal{D}_t, \ m{ au}_t^ op
 abla_{m{ heta}} f(m{x}, m{ heta}_0)$
- \Rightarrow We propose: <u>Task-Localized Sparse Fine-tuning (TaLoS)</u> \rightarrow derive task vector au_t by:
- ullet Calibrate Gradient Mask $oldsymbol{c} o \mathsf{Update}$ only the least sensitive weights

$$oldsymbol{ heta}^{(i)} = oldsymbol{ heta}^{(i-1)} - \gamma [oldsymbol{c}\odot
abla_{oldsymbol{ heta}}\mathcal{L}(f(oldsymbol{x},oldsymbol{ heta}^{(i-1)}),y)] \qquad j=1,\ldots,m \quad oldsymbol{c}_{[j]} = egin{cases} 1 & ext{if }
abla_{oldsymbol{ heta}_{[j]}}f(oldsymbol{x},oldsymbol{ heta}_0) < ext{threshold} \\ 0 & ext{otherwise} \end{cases}$$

ullet Requiring access only to task data $oldsymbol{x} \in \mathcal{D}_t$ (no information sharing needed)

Deriving Weight-Disentangled Task Vectors

- \Rightarrow EMPIRICALLY: <u>least sensitive</u> weights ($abla_{m{ heta}_{[i]}}f(m{x},m{ heta}_0)pprox 0$) are least sensitive for all tasks!
- So, for the least sensitive weights, the Constraints are $orall m{x} \in \mathcal{D}_t, \ m{ au}_t^ op
 abla_{m{ heta}} f(m{x}, m{ heta}_0)$
- \Rightarrow We propose: <u>Task-Localized Sparse Fine-tuning (TaLoS)</u> \rightarrow derive task vector au_t by:
- ullet Calibrate Gradient Mask $oldsymbol{c} o \mathsf{Update}$ only the least sensitive weights

$$oldsymbol{ heta}^{(i)} = oldsymbol{ heta}^{(i-1)} - \gamma [oldsymbol{c} \odot
abla_{oldsymbol{ heta}} \mathcal{L}(f(oldsymbol{x}, oldsymbol{ heta}^{(i-1)}), y)] \qquad j = 1, \ldots, m \quad oldsymbol{c}_{[j]} = egin{cases} 1 & ext{if }
abla_{oldsymbol{ heta}_{[j]}} f(oldsymbol{x}, oldsymbol{ heta}_0) < ext{thresh} \\ 0 & ext{otherwise} \end{cases}$$

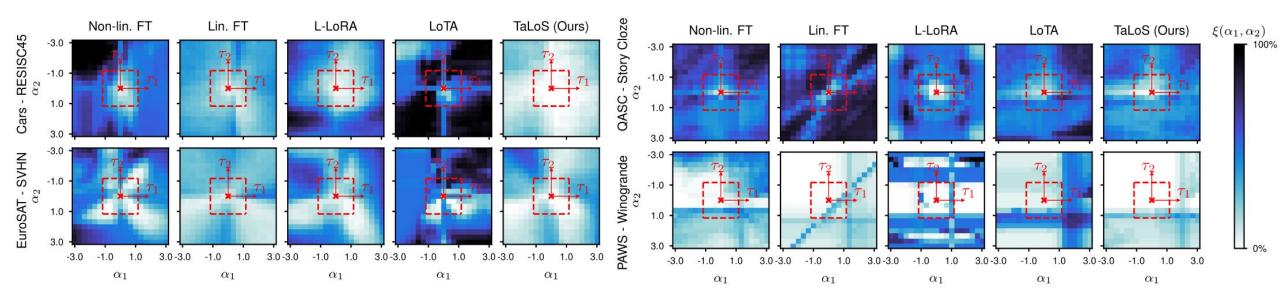
- ullet Requiring access only to task data $oldsymbol{x} \in \mathcal{D}_t$ (no information sharing needed)
- ⇒ TaLoS promotes Weight Disentanglement during fine-tuning
- ullet As it minimally increases the Constraints' dot product $m{ au}_t^ op
 abla_{m{ heta}} f(m{x}, m{ heta}_0)$ ($orall m{x} \in \mathcal{D}_t$)

Assessing Weight Disentanglement

Plotting the Weight Disentanglement Error [G.Ortiz-Jimenez, 2023]:

$$\xi(\alpha_1, \alpha_2) = \sum_{t=1}^{2} \mathbb{E}_{\boldsymbol{x} \in \mathcal{D}_t} [\operatorname{dist}(f(\boldsymbol{x}, \boldsymbol{\theta}_0 + \alpha_1 \boldsymbol{\tau}_1), f(\boldsymbol{x}, \boldsymbol{\theta}_0 + \alpha_1 \boldsymbol{\tau}_1 + \alpha_2 \boldsymbol{\tau}_2))]$$

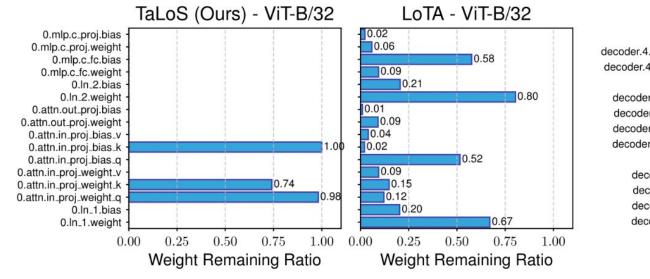
$$dist(y_1, y_2) = 1(y_1 \neq y_2)$$

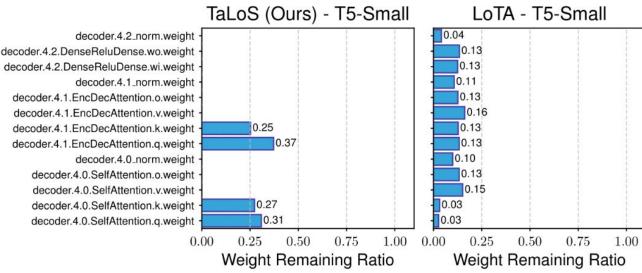


Which Weights does TaLoS Select?

Looking at gradient mask c of one transformer block at 90% sparsity:

- Very structured pattern ⇒ can freeze most of the parameters (<u>high efficiency gains!</u>)
- NOTE: this pattern is repeated in all blocks
 - So, the "special" weights are in Q, K projections of multi-head self-attention layers





Task Arithmetic Experiments

Efficiency vs. Task Arithmetic Results

TaLoS improves on Task Addition & Negation while being the most efficient fine-tuning strategy

Method	Effective Cost of Fine-tuning				Task Addition		Task Negation	
	Forward-Backward Pass Time (s)	Optim. Step Time (s)	Tot. Iteration Time (s)	Peak Memory Usage (GiB)	Abs. (†)	Norm. (†)	Targ. (↓)	Cont. (†)
ViT-B/32								
Non-linear FT (Ilharco et al., 2023)	0.3608 ± 0.0036	0.0114 ± 0.0010	0.3722 ± 0.0037	6.5	71.25	76.94	24.04	60.36
Linearized FT (Ortiz-Jimenez et al., 2023)	0.6858 ± 0.0042	0.0103 ± 0.0020	0.6961 ± 0.0047	10.2	76.70	85.86	11.20	60.74
L-LoRA (Tang et al., 2024)	0.3270 ± 0.0076	0.0036 ± 0.0032	0.3306 ± 0.0082	<u>5.3</u>	78.00	86.08	17.29	60.75
LoTA (Panda et al., 2024)	0.3289 ± 0.0041	0.1269 ± 0.0050	0.4558 ± 0.0065	6.8	64.94	74.37	21.09	61.01
TaLoS (Ours)	0.1256 ± 0.0045	0.0388 ± 0.0040	0.1644 ± 0.0060	4.7	79.67	90.73	11.03	60.69
ViT-L/14								
Non-linear FT (Ilharco et al., 2023)	1.2174 ± 0.0097	0.0156 ± 0.0055	1.2330 ± 0.0112	18.6	86.09	90.14	20.61	72.72
Linearized FT (Ortiz-Jimenez et al., 2023)	1.6200 ± 0.0067	0.0262 ± 0.0082	1.6462 ± 0.0106	21.3	88.29	<u>93.01</u>	10.86	72.43
L-LoRA (Tang et al., 2024)	0.5153 ± 0.0077	0.0082 ± 0.0015	0.5235 ± 0.0078	<u>9.7</u>	87.77	91.87	19.39	73.14
LoTA (Panda et al., 2024)	0.8438 ± 0.0052	0.4449 ± 0.0074	1.2887 ± 0.0090	15.4	87.66	91.69	22.11	<u>73.21</u>
TaLoS (Ours)	0.1891 ± 0.0039	0.1372 ± 0.0036	0.3263 ± 0.0053	7.8	88.37	95.20	10.68	73.63
T5-Large								
Non-linear FT (Ilharco et al., 2023)	0.9047 ± 0.0068	0.0894 ± 0.0034	0.9941 ± 0.0076	30.0	75.37	85.25	41.54	45.49
Linearized FT (Ortiz-Jimenez et al., 2023)	1.7683 ± 0.0084	0.1170 ± 0.0060	1.8853 ± 0.0103	35.1	69.38	78.95	41.37	45.70
L-LoRA (Tang et al., 2024)	0.7452 ± 0.0084	0.0136 ± 0.0029	0.7588 ± 0.0089	18.2	72.10	87.78	48.37	45.51
LoTA (Panda et al., 2024)	0.8526 ± 0.0043	0.3842 ± 0.0019	1.2368 ± 0.0047	32.1	<u>75.84</u>	88.14	44.33	45.47
TaLoS (Ours)	0.4358 ± 0.0075	0.0509 ± 0.0046	0.4867 ± 0.0088	12.1	79.07	90.61	37.20	45.70

Conclusions & Next Steps

- We advanced the field of task arithmetic by deriving a novel set of function localization constraints that provide exact guarantees of weight disentanglement on linearized networks.
- We empirically observed that the least sensitive parameters in transformer-based architectures
 pre-trained on large-scale datasets can be consistently identified regardless of the task. We
 exploit this regularity to satisfy the localization constraints under strict individual training
 assumptions.
- We introduced **Task-Localized Sparse Fine-Tuning (TaLoS)** that enables task arithmetic by jointly implementing the **localization constraints** and inducing a **linear regime** during fine-tuning, without incurring in the overheads of explicit network linearization.

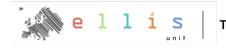
Next Steps:

TaLoS works because we trust the regularities of the pre-trained model
 ⇒ What if we explicitly impose the localization constraint during fine-tuning?

Efficient Model Editing with Task-localized Sparse Fine-tuning

Leonardo Iurada¹, Marco Ciccone², Tatiana Tommasi¹

- **!? When:** Poster Session 2 Thursday, April 24th, 2025 (3:00pm 5:30pm)
- Read our Paper: https://openreview.net/forum?id=TDyE2iuvyc
- Code & Project Page: https://github.com/iurada/talos-task-arithmetic
- Correspondence to: leonardo.iurada@polito.it



¹Politecnico di Torino, Italy ²Vector Institute, Toronto, Canada