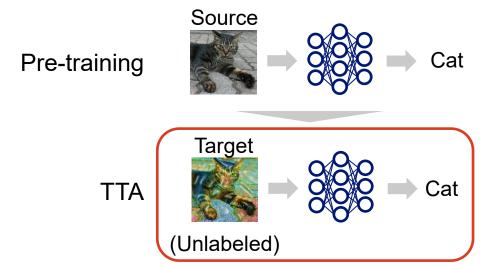


Test-time Adaptation for Regression by Subspace Alignment

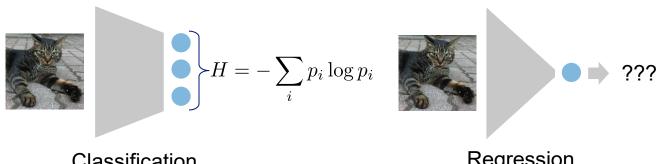
Kazuki Adachi*†, Shin'ya Yamaguchi*†, Atsutoshi Kumagai*, Tomoki Hamagami‡

*NTT Computer and Data Science Laboratories


†Kyoto University

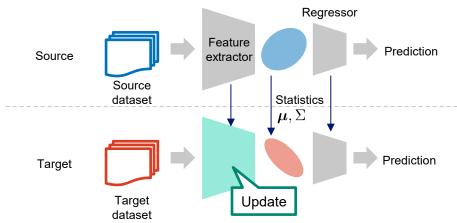
‡Yokohama National University

Test-time Adaptation (TTA)


- Adapts a pre-trained model to the target domain with unlabeled target data
- Does not access the source data

TTA for Regression

- TTA for regression has not been explored
- Existing TTA methods are typically designed for classification using entropy minimization
- Entropy cannot be computed for regression models!
 - Regression models output single scaler values, not distributions


Regression

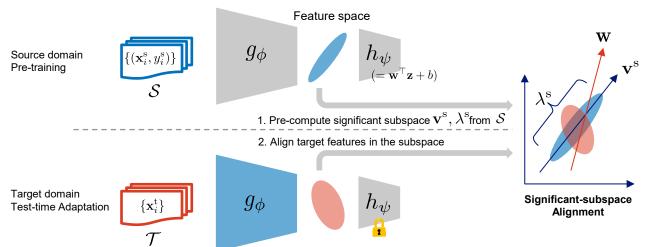
Proposed Method

Basic idea: Feature alignment

- Aligns the target feature statistics (mean and variance) with the pre-computed source ones
- **Problem**: Alignment in the entire feature space is inefficient

Proposed Method

- Features are less diverse in regression than classification [1]
- Our finding: Features are distributed only in a small subspace in regression models
 - → Most feature dimensions do not affect the output


Dataset	#Subspace dims.
SVHN	14
UTKFace	76
Biwi Kinect (mean)	34.5
California Housing (100 dims.)	40

Proposed Method

Approach

- Subspace detection: Detects the representative source feature subspace using PCA
- <u>Dimension weighting</u>: Weights the subspace dimensions based on the significant to the output

Experiment

- Compared TTA performance on regression tasks
 - SVHN-MNIST: Directly predicts a scalar value of the label
 - Source: SVHN, Target: MNIST
 - California Housing: Predicts housing prices (tabular data)
 - > Source: non-coastal area, Target: coastal area
 - <u>UTKFace</u>: Predicts the age of the person in a face image
 - > Source: clean image, Target: corrupted image

SVHN-MNIST

UTKFace

Result

- Our method consistently had higher performance
 - Baseline methods sometimes had lower performance than Source (no adaptation)

SVHN-MNIST						
	$R^2(\uparrow)$	RMSE (↓)	MAE			
	0.406	2.232	1.			

Method	$R^2(\uparrow)$	RMSE (\downarrow)	$MAE(\downarrow)$
Source	0.406	2.232	1.608
DANN TTT	$0.307_{\pm 0.09} \\ 0.288_{\pm 0.02}$	$\begin{array}{c} 2.406_{\pm 0.16} \\ 2.443_{\pm 0.03} \end{array}$	$1.489_{\pm 0.09} \\ 1.597_{\pm 0.03}$
BN-adapt	$0.396_{\pm 0.00}$	$2.251_{\pm 0.01}$	$1.458_{\pm 0.00}$
Prototype	$0.491_{\pm 0.00}$	$2.065_{\pm0.01}$	$1.479_{\pm 0.01}$
FR	$0.369_{\pm 0.01}$	$2.300_{\pm 0.02}$	$1.631_{\pm 0.02}$
VM	$-685.1_{\pm 27.63}$	$75.83_{\pm 1.52}$	$75.78_{\pm 1.52}$
RSD	$0.252_{\pm 0.12}$	$2.497_{\pm 0.20}$	$1.703_{\pm 0.20}$
SSA (ours)	$0.511_{\pm 0.03}$	$2.024_{\pm 0.06}$	$1.209_{\pm 0.04}$
Oracle	$0.874_{\pm 0.00}$	$1.028_{\pm 0.00}$	$0.575_{\pm 0.00}$

California Housing

Method	$R^2(\uparrow)$	RMSE (\downarrow)	$\mathrm{MAE}\left(\downarrow\right)$
Source	0.605	0.684	0.516
BN-adapt	$0.318_{\pm 0.00}$	$0.899_{\pm 0.00}$	$0.699_{\pm 0.00}$
Prototype	$-0.726_{\pm0.01}$	$1.431_{\pm 0.00}$	$1.196_{\pm0.00}$
FR	$0.510_{\pm 0.01}$	$0.762_{\pm 0.01}$	$0.534_{\pm 0.01}$
RSD	-	-	-
SSA (ours)	$0.639_{\pm 0.00}$	$0.655_{\pm 0.00}$	$0.469_{\pm 0.00}$
Oracle	$0.729_{\pm 0.00}$	$0.567_{\pm 0.00}$	$0.404_{\pm0.00}$

Result

- Our method consistently had higher performance
 - Baseline methods sometimes had lower performance than Source (no adaptation)

UTKFace $(R^2 \uparrow)$

Method	Defocus blur	Motion blur	Zoom blur	Contrast	Elastic transform	Jpeg comp.	Pixelate	Gaussian noise	Impulse noise	Shot noise	Brightness	Fog	Snow	Mean
Source	0.410	0.159	0.658	-3.906	0.711	0.069	0.595	-2.536	-2.539	-2.522	0.661	-0.029	-0.544	-0.678
DANN TTT	$0.512 \\ 0.748$	$0.586 \\ 0.761$	$0.637 \\ 0.773$	$-0.720 \\ 0.778$	$0.729 \\ 0.826$	$0.698 \\ 0.772$	$0.807 \\ 0.861$	$-4.341 \\ 0.525$	-3.114 0.532	$-3.744 \\ 0.477$	$0.590 \\ 0.775$	$-0.131 \\ 0.397$	$-0.425 \\ 0.493$	$-0.609 \\ 0.671$
BN-Adapt Prototype FR VM RSD	0.727 -1.003 0.794 -2.009 0.789	0.759 -1.020 0.839 -1.991 0.833	0.763 -1.016 0.849 -2.037 0.851	0.702 -0.719 0.756 -1.889 0.749	$0.826 \\ -0.967 \\ 0.899 \\ -1.918 \\ 0.897$	0.778 -0.908 0.825 -1.918 0.825	0.850 -0.974 0.946 -1.751 0.941	0.510 -0.514 0.509 -2.181 0.502	0.510 -0.512 0.522 -2.207 0.503	0.446 -0.512 0.458 -2.176 0.445	0.790 -1.004 0.861 -1.927 0.862	0.392 -0.823 0.408 -2.250 0.419	0.452 -0.822 0.428 -2.197 0.500	0.654 -0.830 0.700 -2.035 0.701
SSA (ours)	0.803	0.839	0.851	0.792	0.899	0.829	0.943	0.580	0.592	0.560	0.863	0.440	0.517	0.731
Oracle	0.856	0.890	0.889	0.862	0.917	0.873	0.960	0.635	0.652	0.635	0.895	0.519	0.671	0.789

Thank you for watching!

Paper (OpenReview)

GitHub