EASING TRAINING PROCESS OF RECTIFIED FLOW MODELS VIA LENGTHENING INTER-PATH DISTANCE

Shifeng Xu¹

Yanzhu Liu²

Adams Wai-Kin Kong¹

¹Nanyang Technological University, Singapore

²Institute for Infocomm Research & Centre for Frontier AI Research, A*STAR, Singapore

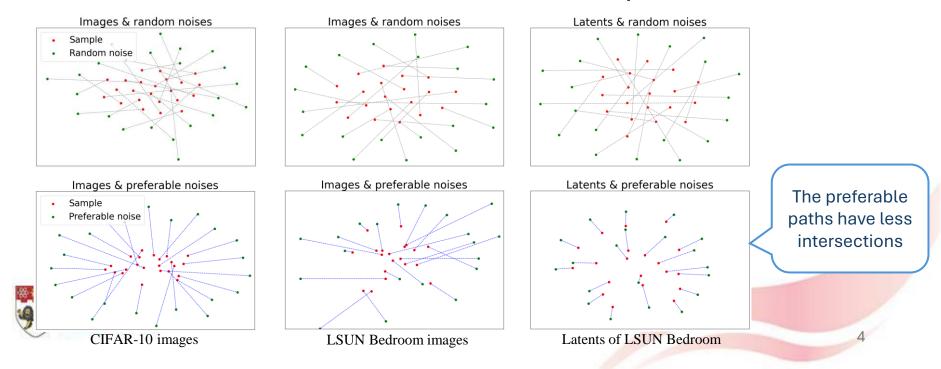
Outlines

Problem settings

Our proposed method: DANSM

Experiments

- Diffusion-based generative models
 - Diffusion models (DM)
 - Rectified flow models (RFM)
- Consistent model reproducibility
 - From the same noise, generate similar samples

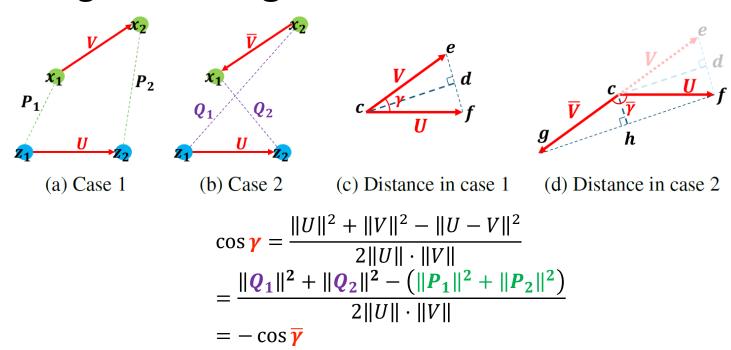


- When converting a sample back to noise,
 - the resultant noise (referred to as **preferable noise**) differs from random noise.
 - The t-SNE visualization of random & preferable noises:

- Preferable paths have:
 - less intersections in two-dimension visualization,
 - larger inter-path distance in high-dimension space.
- in RFM, the paths are straight lines
 - In training process, between 2 samples and 2 noises, which pairs (or paths) are better?

- Problem settings
 - In \mathbb{R}^d space, n samples and n noises compose n paths. Let $\boldsymbol{p_{i,j}}$ be the path from the i-th noise to the j-th sample. We define n as the match-size. The objective is to maximize the inter-path distances among these n paths:

$$\max_{\sigma} \frac{2}{n(n-1)} \sum_{i=1}^{n} \sum_{k=i+1}^{n} dist(p_{i,\sigma(i)}, p_{k,\sigma(k)})$$
 Too high complexity


where σ is a permutation of $\{1,2,\dots,n\}$, and $dist(\cdot,\cdot)$ is the distance of two paths.

• This method is referred to as Distance-Aware Noise-Sample Matching (**DANSM**).

Our proposed method: DANSM

 We prove that inter-path distance and path length have negative correlation.

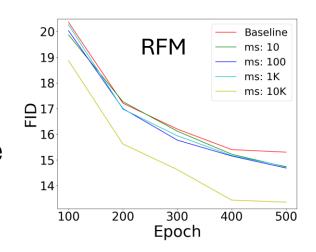
Shorter path lengths \rightarrow positive $\cos \gamma \rightarrow$ acute angle $\gamma \rightarrow$ longer inter-path distance

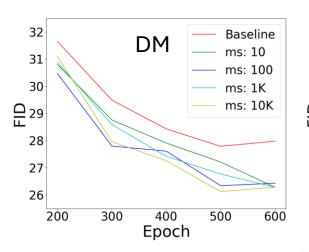
Our proposed method: DANSM

- Surrogate method
 - Instead of lengthening inter-path distance, we **shorten** the path length:

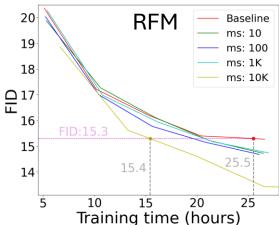
$$\min_{\sigma} \frac{1}{n} \sum_{i=1}^{n} \|p_{i,\sigma(i)}\| \qquad \qquad \text{Lower complexity than previous:} \\ \max_{\sigma} \frac{2}{n(n-1)} \sum_{i=1}^{n} \sum_{k=i+1}^{n} dist(p_{i,\sigma(i)}, p_{k,\sigma(k)})$$

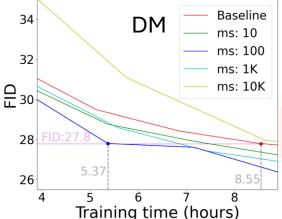
- Implementation
 - Hungarian algorithm has a time complexity of $O(n^3)$.
 - We adopt a **greedy algorithm** with complexity of $O(n^2)$, achieving similar performance.




Experiments

• FID comparison


• ms: match-size


match-size n:
optimize the
noise-sample
pairs between
n noises and n
samples.

Experiments

- Visualization
 - Samples by
 - 3 steps
 - 4 steps
 - 5 steps
 - 10 steps

Baseline ms:100 ms:10K

Thanks

