Debiasing Mini-Batch Quadratics for Applications in Deep Learning

Lukas Tatzel, Bálint Mucsányi, Osane Hackel & Philipp Hennig

Notation.

- + Regularized loss: $\mathcal{L}_{reg}(\boldsymbol{\theta}; \mathcal{D}) = \frac{1}{|\mathcal{D}|} \sum_{n \in \mathcal{D}} \ell(f_{\boldsymbol{\theta}}(\mathbf{x}_n), \mathbf{y}_n) + r(\boldsymbol{\theta})$
- + Full-batch quadratic around θ_0 :

$$\mathcal{L}_{\text{reg}}(\boldsymbol{\theta}; \mathcal{D}) \approx q(\boldsymbol{\theta}; \mathcal{D}) = \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \mathbf{H}_{\mathcal{D}}(\boldsymbol{\theta} - \boldsymbol{\theta}_0) + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \mathbf{g}_{\mathcal{D}} + c_{\mathcal{D}}$$

Notation.

- + Regularized loss: $\mathcal{L}_{reg}(\boldsymbol{\theta}; \mathcal{D}) = \frac{1}{|\mathcal{D}|} \sum_{n \in \mathcal{D}} \ell(f_{\boldsymbol{\theta}}(\mathbf{x}_n), \mathbf{y}_n) + r(\boldsymbol{\theta})$
- + Full-batch quadratic around θ_0 :

$$\mathcal{L}_{\text{reg}}(\boldsymbol{\theta}; \mathcal{D}) \approx q(\boldsymbol{\theta}; \mathcal{D}) = \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \mathbf{H}_{\mathcal{D}}(\boldsymbol{\theta} - \boldsymbol{\theta}_0) + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \mathbf{g}_{\mathcal{D}} + c_{\mathcal{D}}$$

+ *Mini-batch* quadratic around θ_0 : $\mathcal{L}_{reg}(\theta; \mathcal{D}) \approx q(\theta; \mathcal{D}) \approx q(\theta; \mathcal{B})$ with $\mathcal{B} \subset \mathcal{D}$

Notation.

- + Regularized loss: $\mathcal{L}_{reg}(\boldsymbol{\theta}; \mathcal{D}) = \frac{1}{|\mathcal{D}|} \sum_{n \in \mathcal{D}} \ell(f_{\boldsymbol{\theta}}(\mathbf{x}_n), \mathbf{y}_n) + r(\boldsymbol{\theta})$
- + Full-batch quadratic around θ_0 :

$$\mathcal{L}_{\text{reg}}(\boldsymbol{\theta}; \mathcal{D}) \approx q(\boldsymbol{\theta}; \mathcal{D}) = \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \mathbf{H}_{\mathcal{D}}(\boldsymbol{\theta} - \boldsymbol{\theta}_0) + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \mathbf{g}_{\mathcal{D}} + c_{\mathcal{D}}$$

+ *Mini-batch* quadratic around θ_0 : $\mathcal{L}_{reg}(\theta; \mathcal{D}) \approx q(\theta; \mathcal{D}) \approx q(\theta; \mathcal{B})$ with $\mathcal{B} \subset \mathcal{D}$

What are these quadratic approximations used for?

- + Second-order optimizers rely on Newton steps: $\theta_{\text{new}} = \arg\min_{\theta} q(\theta; \mathcal{B})$
- + Post-hoc uncertainty quantification with the Laplace approximation: $q(\theta; \mathcal{B}) \rightsquigarrow \mathcal{N}(\theta; \theta_{\star}, \mathsf{H}_{\mathcal{B}}^{-1})$

Notation.

- + Regularized loss: $\mathcal{L}_{reg}(\theta; \mathcal{D}) = \frac{1}{|\mathcal{D}|} \sum_{n \in \mathcal{D}} \ell(f_{\theta}(\mathbf{x}_n), \mathbf{y}_n) + r(\theta)$
- + Full-batch quadratic around θ_0 :

$$\mathcal{L}_{\text{reg}}(\boldsymbol{\theta}; \mathcal{D}) \approx q(\boldsymbol{\theta}; \mathcal{D}) = \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \mathbf{H}_{\mathcal{D}}(\boldsymbol{\theta} - \boldsymbol{\theta}_0) + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \mathbf{g}_{\mathcal{D}} + c_{\mathcal{D}}$$

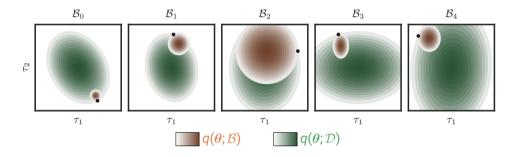
+ *Mini-batch* quadratic around θ_0 : $\mathcal{L}_{reg}(\theta; \mathcal{D}) \approx q(\theta; \mathcal{D}) \approx q(\theta; \mathcal{B})$ with $\mathcal{B} \subset \mathcal{D}$

What are these quadratic approximations used for?

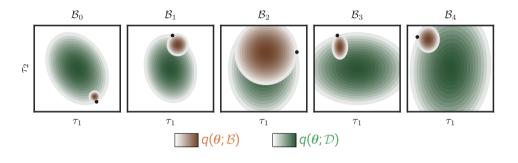
- + Second-order optimizers rely on Newton steps: $\theta_{\text{new}} = \arg\min_{\theta} q(\theta; \beta)$
- + Post-hoc uncertainty quantification with the Laplace approximation: $q(\theta; \mathcal{B}) \rightsquigarrow \mathcal{N}(\theta; \theta_{\star}, \mathsf{H}_{\mathcal{B}}^{-1})$

Is $q(\theta; \mathcal{B})$ a good proxy for $q(\theta; \mathcal{D})$?

Mini-Batch Quadratics Are Biased!

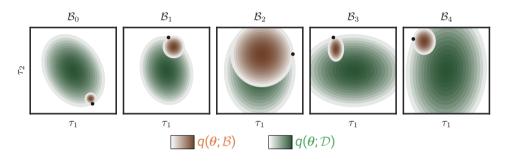


Mini-Batch Quadratics Are Biased!



Quadratic approximations to the training loss computed on *mini-batches* of the training data provide a *distorted* representation of the true underlying loss landscape.

Mini-Batch Quadratics Are Biased!



Quadratic approximations to the training loss computed on *mini-batches* of the training data provide a *distorted* representation of the true underlying loss landscape.

This bias is highly relevant for applications that operate on $q(\theta; \mathcal{B})$.

- Second-order optimization: Detrimental updates of the parameters
- + Laplace approximation: Unreliable uncertainty estimates

Can We Fix It?

Idea: Split mini-batch in two, use one half for directions, the other for directional quantities.

We can eliminate the bias at almost no computational overhead by splitting the mini-batch in two!

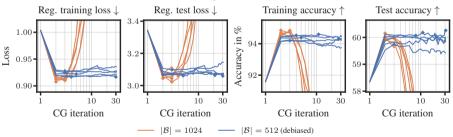
Can We Fix It?

Idea: Split mini-batch in two, use one half for directions, the other for directional quantities.

We can eliminate the bias at almost no computational overhead by splitting the mini-batch in two!

Empirical results.

+ Debiased CG is much more stable than the single-batch approach.



+ Debiased Laplace approximation mimics the full-batch Laplace approximation very well.

Summary

Contributions.

- 1. We show that the bias presented here introduces a systematic error.
- 2. We provide a theoretical explanation.
- 3. We explain the relevance of this bias for second-order optimization and uncertainty quantification via the Laplace approximation in deep learning.
- 4. We develop debiasing strategies and demonstrate their effectiveness.

The paper can be found at: https://openreview.net/forum?id=Q0TEVKV2cp

Thank You for Your Attention!