Steering Protein Family Design through

Profile Bayesian Flow

Jingjing Gong* Yu Pei* Siyu Long* Yuxuan Song*
Zhe Zhang Wenhao Huang Ziyao Cao
Shuyi Zhang Hao Zhou WeiYing Ma

(* denotes equal contribution)

Overview

Some Background

Profile Bayesian Flow Network

• Experimental Results

Protein Language VS. Natural Language

Reflection of structure and function

Spatial constraint

Co-evolution Homology

Machine can be an expert

Sequence

Semantic meaning

Reflection of human inteligence

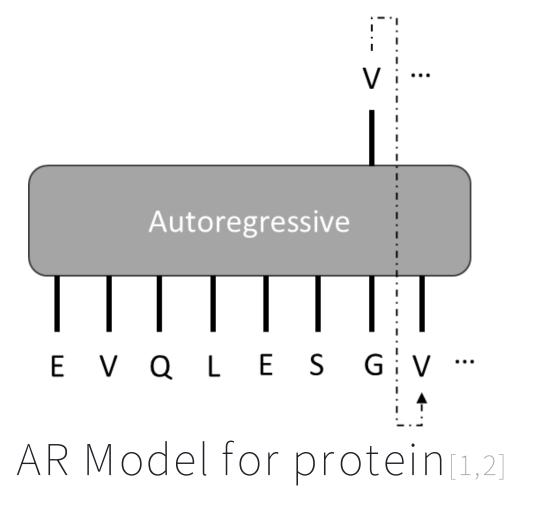
Left-to-right bias

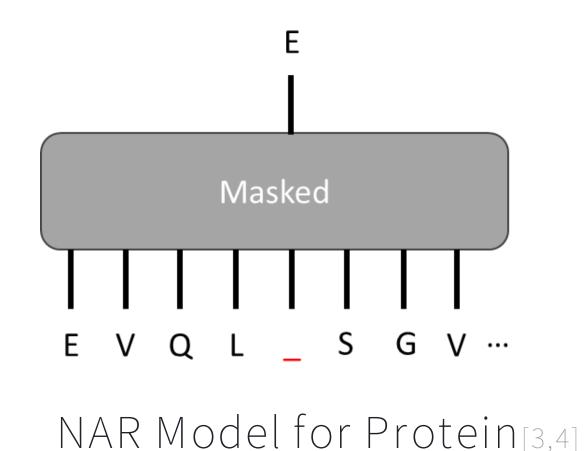
Human is an expert

Protein Sequence

Natural Language

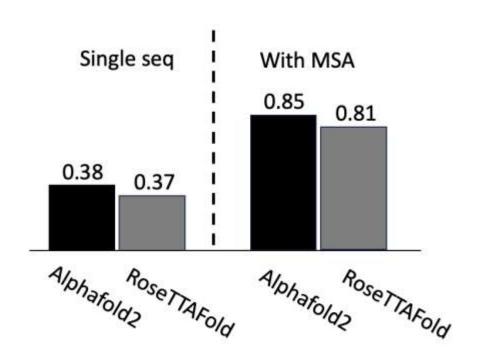
Autoregressive VS. Non-autoregressive





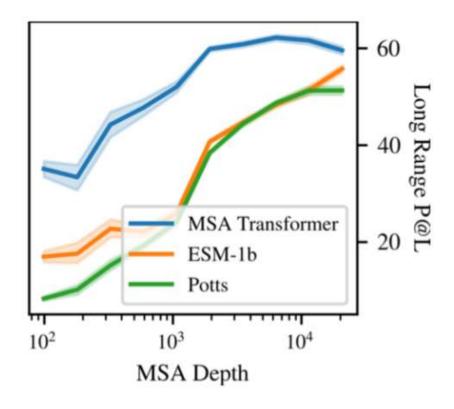
- [1] Large language models generate functional protein sequences across diverse families. Madani et al.
- [2] ProGen2: Exploring the Boundaries of Protein Language Models. Nijkamp et al.
- [3] Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Rives et al.
- [4] Evolutionary-scale prediction of atomic level protein structure with a language model. Lin et al.

Co-evolution Information is Critical



Multi-sequences are important for protein folding

Comparison experiments conducted on CASP14, by ESMFold[1]

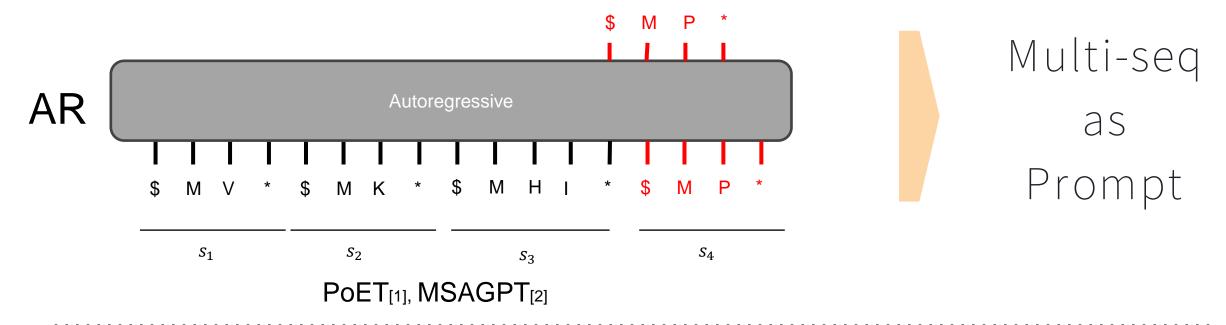


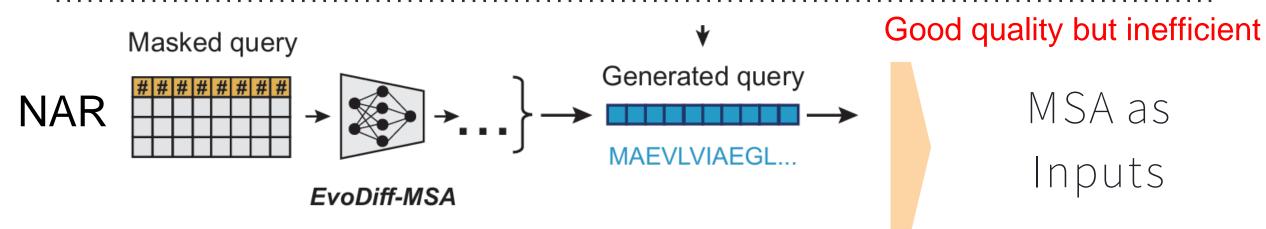
Top-L long-range contact precision comparison on 14,842 proteins conducted by MSA Transformer[2]

[1] Evolutionary-scale prediction of atomic level protein structure with a language model. Lin et al.

[2] MSATransformer. Rao et al.

Multi-Sequence Based Model





Literature

Multi-Sequence

Map

PoET (2023)

★ ProfileBFN (2025)

ProtMamba(2024)

Evo-Diff-MSA (2023)

MSAGPT(2024)

MSATransformer (2021)

AR

NAR

ProtTrans (2019)

ESM1-2 (2020,2022), ESM3 (2024)

ProteinBert (2022)

Progen 1-2 (2020,2023)

DPLM (2024)

Repsentative

Generative

Single-Sequence

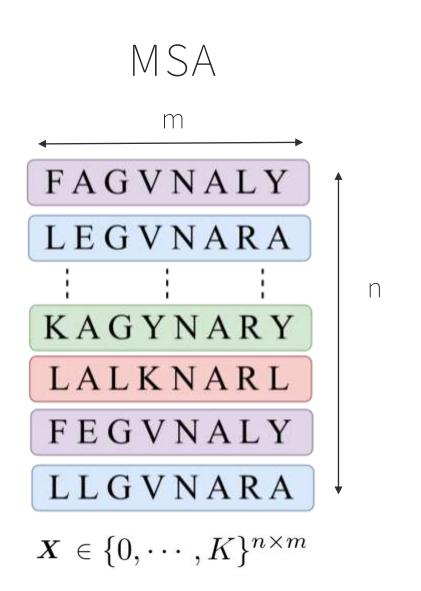
Overview

Some Background

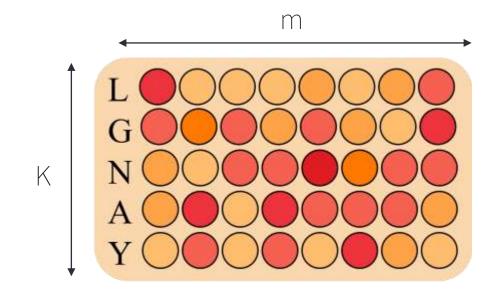
Profile Bayesian Flow Network

• Experimental Results

What Makes a MSA Profile?

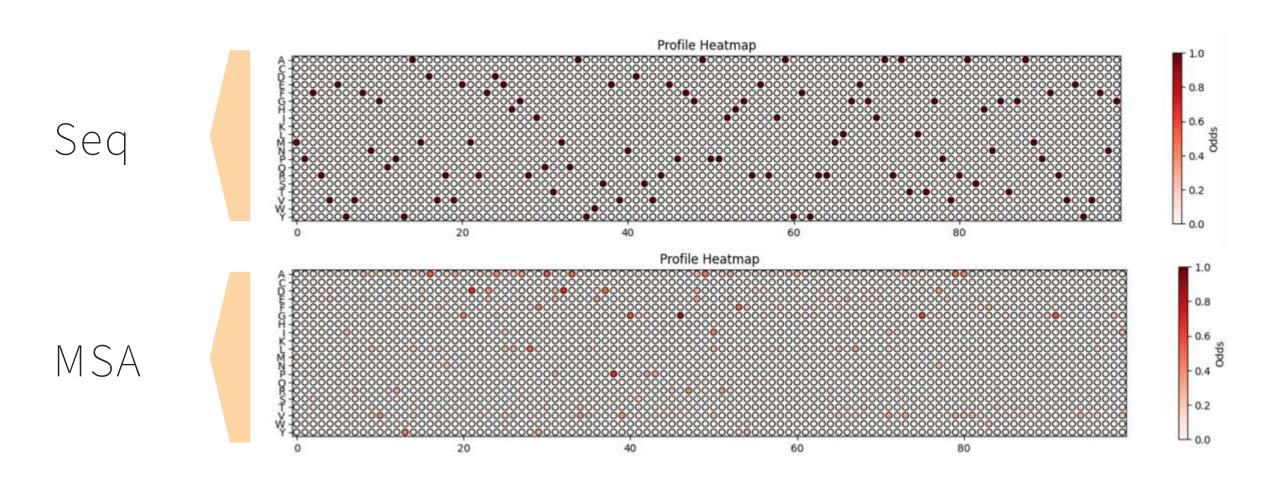


MSA Profile

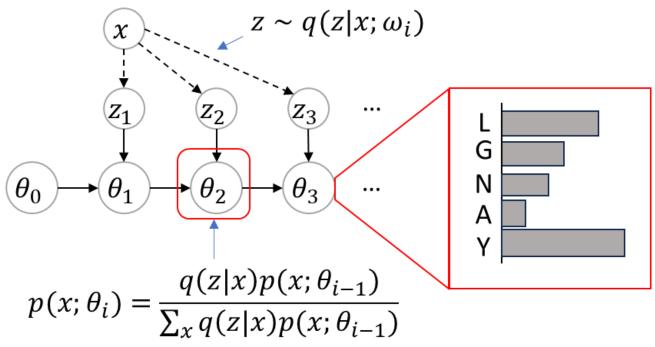


$$P_k^{(i)} = \frac{1}{n} \sum_{j=1}^n \mathbf{1}_{(X_{ji}=k)}$$

Unified View between Single Sequence and MSA



What is the Bayesian Flow?



Bayesian update through Bayesian rule

Extension to Profile Data

Theorem 3.1. Given a discrete noisy channel $q(\mathbf{z}_i|\boldsymbol{\rho};\omega_i) = \frac{1-\omega_i}{K} + \omega_i \boldsymbol{\rho}(\mathbf{z})$ where $\boldsymbol{\rho}$, $\sum_x \boldsymbol{\rho}_x = 1, \forall \boldsymbol{\rho}_x \geq 0$ is a certain profile, with $\omega_i^2 = \int_{(i-1)/n}^{i/n} \mu(\tau)^2 d\tau$, $\beta(t) = \int_0^t \mu^2(\tau) d\tau (1 \geq t \geq 0)$, $\mu(\tau) > 0, \forall \tau$, and $\beta(1)$ bounded, when $n \to +\infty$, the continuous time discrete Bayesian flow is:

$$p_F(\boldsymbol{\theta}|\boldsymbol{\rho};t) = \underset{\mathcal{N}(\mathbf{y}|K\beta(t)\boldsymbol{\rho},\beta(t)\mathcal{C})}{\mathbb{E}} \delta\left(\boldsymbol{\theta} - \frac{e^{\mathbf{y}}\boldsymbol{\theta}_0}{\sum_{k=1}^K e^{\mathbf{y}_k}(\boldsymbol{\theta}_0)_k}\right)$$
(6)

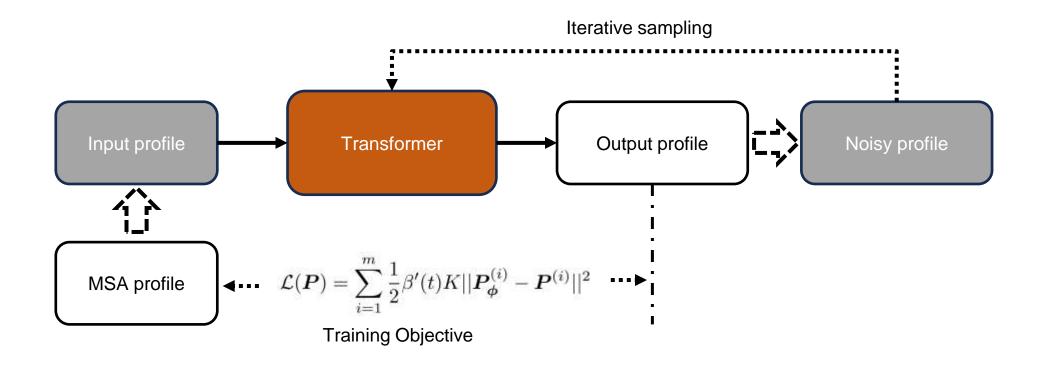
Theorem 3.2. Given a discrete noisy channel $q(\mathbf{z}|\boldsymbol{\rho}) = \frac{1-\omega}{K} + \omega \boldsymbol{\rho}(\mathbf{z}), p(\mathbf{z}) = \frac{1-\omega}{K} + \omega p_{\boldsymbol{\phi}}(\mathbf{z}), \omega > 0$, where $\boldsymbol{\rho}, \sum_{x} \boldsymbol{\rho}_{x} = 1, \forall \boldsymbol{\rho}_{x} \geq 0$ is a certain profile, with $n\omega^{2} = \beta$ bounded,

$$\lim_{n \to +\infty} n D_{\mathrm{KL}}(q(\mathbf{z}|\boldsymbol{\rho})||p(\mathbf{z})) = \frac{1}{2} \beta K||p_{\boldsymbol{\phi}} - \boldsymbol{\rho}||^2$$
 (7)

For a more general case where $\omega(t)$ changes through time, with $\beta(t) = \int_0^t \omega^2(\tau) d\tau$, $1 \ge t \ge 0$, and $\beta(1)$ bounded, the limit of the KL divergence is:

$$\lim_{n \to +\infty} n D_{\mathrm{KL}}(q(\mathbf{z}|\boldsymbol{\rho};t)||p(\mathbf{z};t)) = \frac{1}{2}\beta'(t)K||p_{\boldsymbol{\phi}} - \boldsymbol{\rho}||^2$$
 (8)

Profile Bayesian Flow



The Γ symbol stands for bayesian flow process $p_F(\theta|\rho;t) = \mathbb{E}_{\mathcal{N}(\mathbf{y}|K\beta(t)\rho,\beta(t)\mathcal{C})} \delta\left(\theta - \frac{e^{\mathbf{y}}\theta_0}{\sum_{k=1}^{K} e^{\mathbf{y}_k}(\theta_0)_k}\right)$

Overview

Some Background

Profile Bayesian Flow Network

Experimental Results

Results: Sampling Efficiency

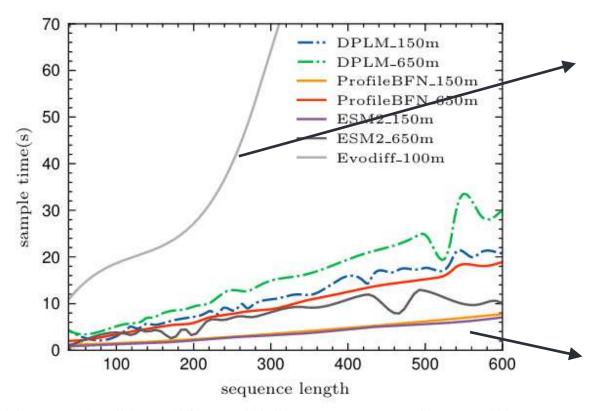
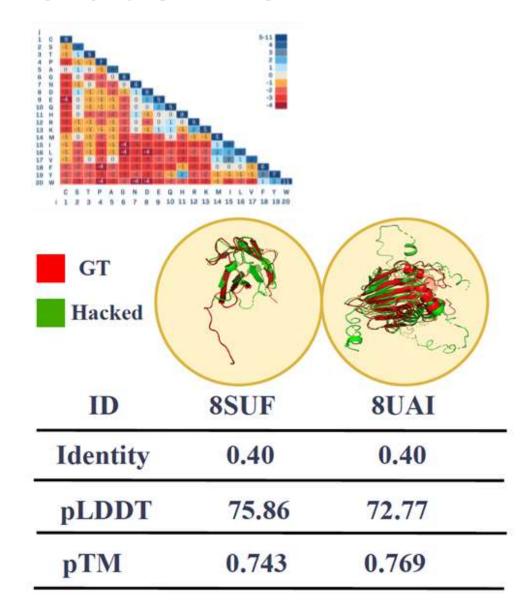


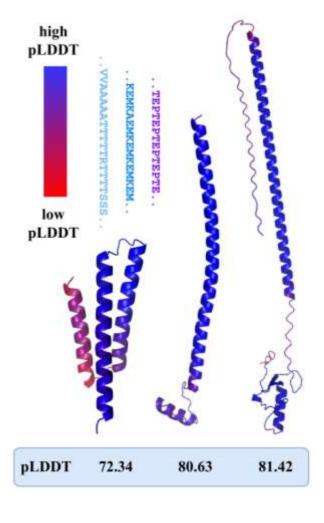
Figure 3: Sampling efficiency comparison. ProfileBFN has a higher sampling efficiency compared to its competitors.

Evodiff sampling time increases rapidly

ProfileBFN shares the same complexity with single seq models

Problems in Parameterized Evaluation





Non-paramerized Evaluation

MGPP-AQ

SGKLSAM

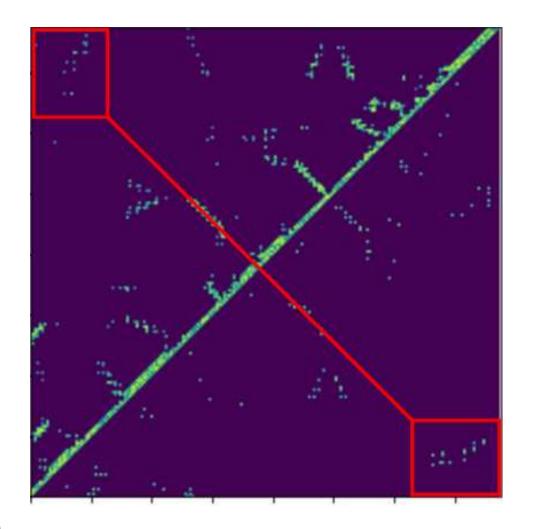
RG---AS

-AWG-GR

PA-QNGT

SASSFG-

11	6	13	13	0	1	14
16	6	9	10	16	1	11
15	6	0	0	0	1	16
0	1	12	6	0	6	15
13	1	0	14	12	6	17
16	1	16	16	5	6	0

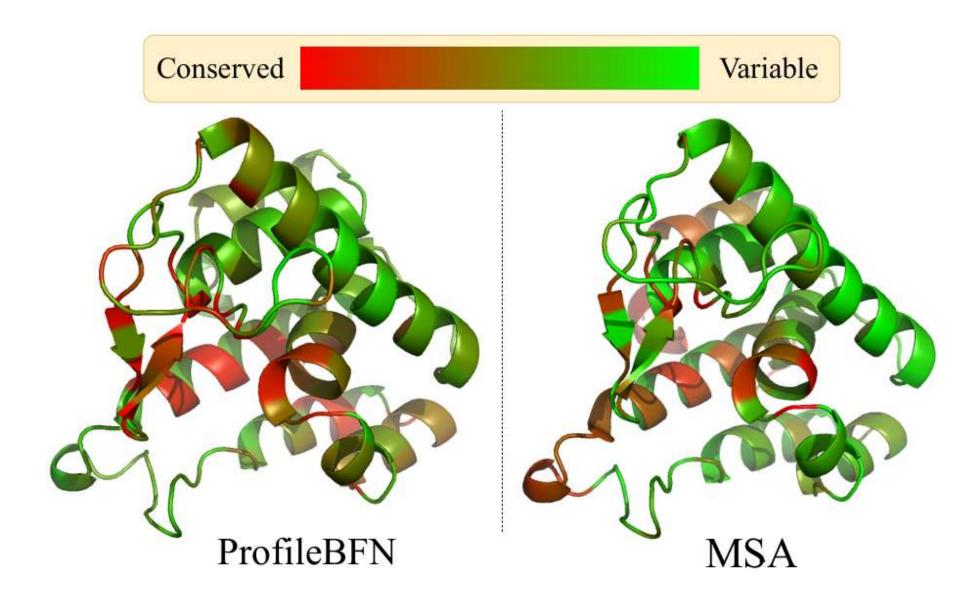


CCMPRED

Results: Profile Better than MSA

Model	Structure					
	LR P@L↑	LR P@L/2 ↑	LR P@L/5 ↑			
Searched MSA	0.186	0.270	0.395			
ESM-2 (150M)	0.086	0.116	0.167			
ESM-2 (650M)	0.100	0.146	0.223			
PoET-Single (201M)	0.025	0.028	0.031			
PoET-MSA (201M)	0.036	0.042	0.051			
EvoDiff-MSA (100M)	0.061	0.089	0.168			
DPLM (150M)	0.093	0.147	0.284			
DPLM (650M)	0.102	0.159	0.303			
ProfileBFN-Single (150M)	0.126	0.197	0.321			
ProfileBFN-Single (650M)	0.162	0.262	0.422			
ProfileBFN-Profile (150M)	0.128	0.210	0.384			
ProfileBFN-Profile (650M)	0.173	0.280	0.474			

Results: Visualization



Summary of Contribution

- Modeling protein in profile space rather than sequence space
- Deriving a new kind of BFN
 for family protein design
- Proposing evaluation metric
 that is more convincing

Thank You!

Welcome to Join Us at Poster Session 15: 00

at #16 for In-depth Discussion!

Thank All Co-Authors' Hardwork!

GeoBFN

ICLR2024 Oral Molecular

MolCRAFT

ICML2024 Poster SBDD

CysBFN

ICLR2025 Spotlight Material

ProfileBFN

ICLR2025 Oral Protein Family

Theorems

Theorem 3.1. Given a discrete noisy channel $q(\mathbf{z}_i|\boldsymbol{\rho};\omega_i) = \frac{1-\omega_i}{K} + \omega_i\boldsymbol{\rho}(\mathbf{z})$ where $\boldsymbol{\rho}$, $\sum_x \boldsymbol{\rho}_x = 1, \forall \boldsymbol{\rho}_x \geq 0$ is a certain profile, with $\omega_i^2 = \int_{(i-1)/n}^{i/n} \mu(\tau)^2 d\tau$, $\beta(t) = \int_0^t \mu^2(\tau) d\tau (1 \geq t \geq 0)$, $\mu(\tau) > 0, \forall \tau$, and $\beta(1)$ bounded, when $n \to +\infty$, the continuous time discrete Bayesian flow is:

$$p_F(\boldsymbol{\theta}|\boldsymbol{\rho};t) = \underset{\mathcal{N}(\mathbf{y}|K\beta(t)\boldsymbol{\rho},\beta(t)\mathcal{C})}{\mathbb{E}} \delta \left(\boldsymbol{\theta} - \frac{e^{\mathbf{y}}\boldsymbol{\theta}_0}{\sum_{k=1}^K e^{\mathbf{y}_k}(\boldsymbol{\theta}_0)_k} \right)$$
(6)

Where θ is the accumulated information about the profile ρ . $C \in \mathbb{R}^{K \times K}$, $C_{ij} = K\mathbf{1}_{i=j} - 1$, is the covariance matrix of the multivariate Gaussian distribution. $\delta(\cdot - \theta)$ is Dirac delta function that is zero everywhere except at θ .

Where $\rho \in \Delta^{K-1}$ is a profile which can also be viewed as Probability Mass Function (PMF) with K possible categories, this is the different part compared to vanilla discrete Bayesian flow (Eq. 5).

Additionally, we derive the new loss function as below.

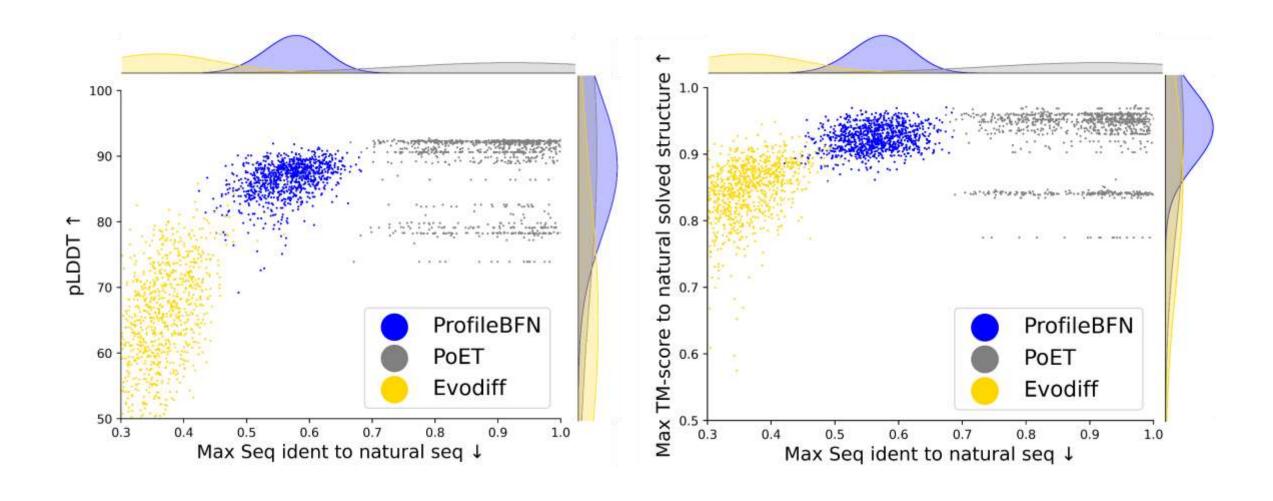
Theorem 3.2. Given a discrete noisy channel $q(\mathbf{z}|\boldsymbol{\rho}) = \frac{1-\omega}{K} + \omega \boldsymbol{\rho}(\mathbf{z}), p(\mathbf{z}) = \frac{1-\omega}{K} + \omega p_{\boldsymbol{\phi}}(\mathbf{z}), \omega > 0$, where $\boldsymbol{\rho}, \sum_{x} \boldsymbol{\rho}_{x} = 1, \forall \boldsymbol{\rho}_{x} \geq 0$ is a certain profile, with $n\omega^{2} = \beta$ bounded,

$$\lim_{n \to +\infty} nD_{\mathrm{KL}}(q(\mathbf{z}|\boldsymbol{\rho})||p(\mathbf{z})) = \frac{1}{2}\beta K||p_{\boldsymbol{\phi}} - \boldsymbol{\rho}||^2$$
(7)

For a more general case where $\omega(t)$ changes through time, with $\beta(t) = \int_0^t \omega^2(\tau) d\tau$, $1 \ge t \ge 0$, and $\beta(1)$ bounded, the limit of the KL divergence is:

$$\lim_{n \to +\infty} n D_{\mathrm{KL}}(q(\mathbf{z}|\boldsymbol{\rho};t)||p(\mathbf{z};t)) = \frac{1}{2}\beta'(t)K||p_{\boldsymbol{\phi}} - \boldsymbol{\rho}||^2$$
 (8)

Paramerized Results



Applications: Enzyme

Table 2: Performance on enzyme tasks. We report the Accuracy × Uniqueness metric, complementary results can be found in Table 6. The results show that the enzymes generated by ProfileBFN are likely to be considered as having corresponding functions.

Model	P40925↑	Q7X7H9↑	Q15165 ↑
PoET-MSA EvoDiff-MSA	3.00% 27.93%	33.3% 88.69%	0.05% 1.39%
ProfileBFN-Profile (650M)	95.19%	98.98%	42.67%

Applications: Antibody

Model	CDR-H1	CDR-H2	CDR-H3	CDR-L1	CDR-L2	CDR-L3
RAbD	0.2285	0.2550	0.2214	0.3427	0.2630	0.2073
DiffAb	0.6575	0.4931	0.2678	0.5667	$\frac{0.5932}{0.3006}$	0.4647
AntiBERTy	$\frac{0.7940}{0.7020}$	0.5932	0.4133	0.7208 0.5799	0.3996	0.2758
AbLang	0.7039	0.7981	0.3207	0.5799	0.5513	0.3175
ProfileBFN-single	0.6766	0.6188	0.1946	0.5356	0.5873	0.3064
ProfileBFN-Anti	0.8227	0.7236	0.3343	<u>0.6402</u>	0.6156	0.4716

Table 8: Performance of Antibody CDR in-paint task ProfileBFN compared to baselines. The best result is indicated in bold, while the second-best result is underlined.

Applications: Folding

Table 7: Using ProfileBFN to enhance AF2 performance by adding virtual MSAs, the results show that ProfileBFN is capable of generating more appropriate MSAs for models such as AF2 compared to the ground truth searched MSA and MSAGPT. All metrics are scaled from 0 to 100.

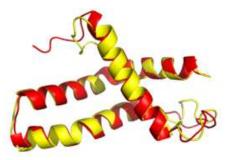
Model	TMscore ↑	LDDT ↑	pLDDT \uparrow
AF2-MSA	53.20	54.01	62.91
MSAGPT	55.72	55.59	66.38
ProfileBFN	56.84	55.72	67.04

T1033

TM-score = 0.385 pLDDT = 52.39



TM-score = 0.617 pLDDT = 53.10



TM-score = 0.842 pLDDT = 76.63

Representation Learning

Table 3: Performance on various protein prediction tasks. ProfileBFN shows a strong understanding of proteins. *: protein structure is provided. †: results are quoted from SaProt (Su et al., 2023). ♥: results are quoted from DPLM (Wang et al., 2024). ♦: results are reproduced by us using the official code and data. Our model is compared with the ♦ version of the baseline models, if multiple versions exist.

Model	Thermostability	HumanPPI	manPPI Metal Ion Binding	EC	GO			DeepLoc	
	Thermosaconey	1141114111111		LC	MF	BP	CC	Subcellular	Binary
	Spearman's ρ	ACC(%)	ACC(%)	Fmax	Fmax	Fmax	Fmax	ACC(%)	ACC(%)
SaProt* †	0.724	86.41	75.75	0.884	0.678	0.356	0.414	85.57	93.55
MIF-ST* †	0.694	75.54	75.08	0.803	0.627	0.239	0.248	78.96	91.76
ESM-1 (1B) †	0.708	82.22	73.57	0.859	0.661	0.320	0.392	80.33	92.83
ESM-2 (650M) †	0.680	76.67	71.56	0.877	0.668	0.345	0.411	82.09	91.96
AR-LM (650M) ♡	0.638	68.48	61.16	0.691	0.566	0.258	0.287	68.53	88.31
DPLM (650M) ♡	0.695	86.41	75.15	0.875	0.680	0.357	0.409	84.56	93.09
DPLM (650M) ◊	0.698	77.77	70.52	0.881	0.659	0.330	0.388	85.98	93.17
ProfileBFN (650M)	0.710	82.22	74.58	0.887	0.673	0.342	0.416	86.80	93.58
DPLM (150M) †	0.687	80.98	72.17	0.822	0.662	0.328	0.379	82.41	92.63
ProfileBFN (150M)	0.701	78.88	77.74	0.874	0.672	0.341	0.394	82.73	93.52

MSA Depth

