Gaussian Ensemble Belief Propagation

Efficient Inference in High-Dimensional Systems

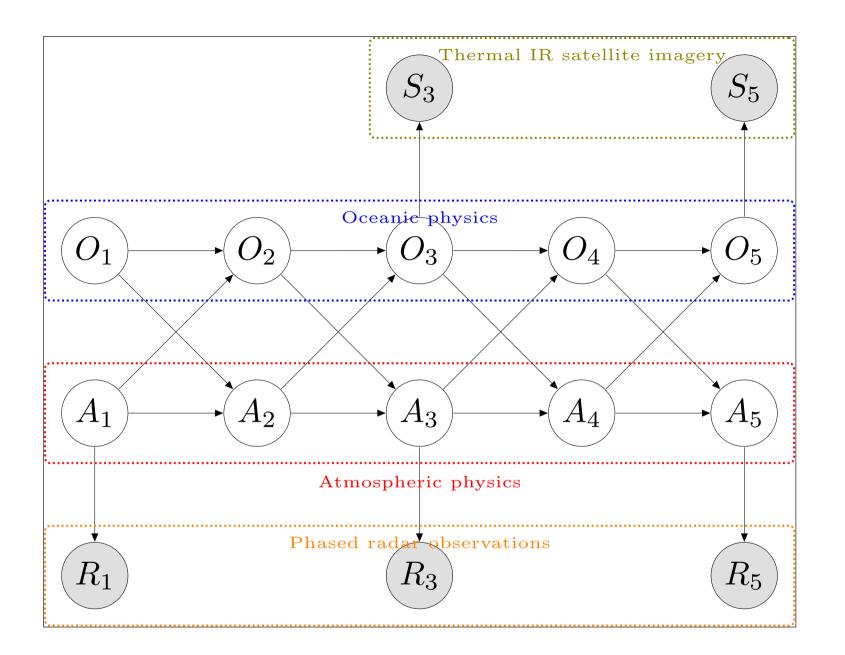
Dan MacKinlay, Russell Tsuchida, Dan Pagendam, Petra Kuhnert

Introduction

The Challenge: High-Dimensional Inference

- Infer hidden variables in complex physical systems
- Examples: climate, weather, fluid dynamics
- Key difficulties:
- High-dimensional
- Noisy observations
- Complex physics models
- Hierarchical dependencies

A Real-World Example



The Challenge of Scale

- Planetary-scale systems
- Weather & climate
- Power grids
- Agriculture
- Flood prediction
- Computational barriers
- Expensive simulators
- Sparse observations
- Hidden variables

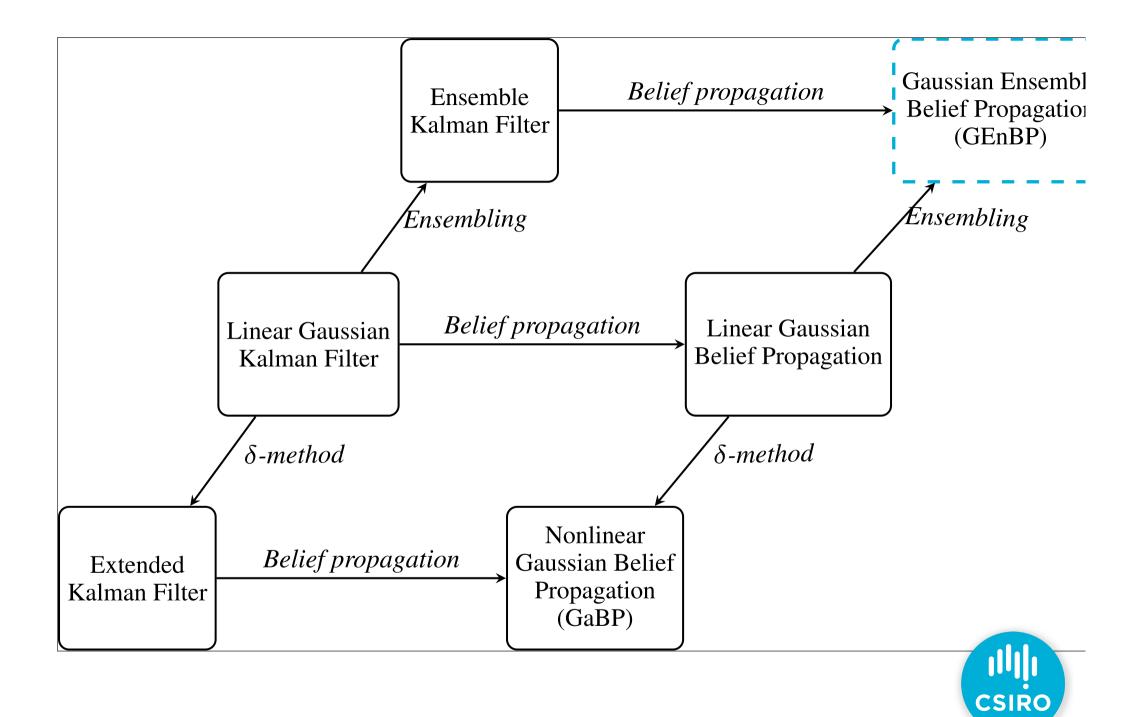
Our Solution: GEnBP

Gaussian Ensemble Belief Propagation:
Belief-propagation + Ensemble Kalman filtering

Gaussian Ensemble Belief Propagation

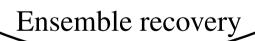
- Key innovation: Combines Ensemble Kalman Filter with Gaussian Belief Propagation
- Core principles:
- Use existing simulators with random noise inputs
- Update guesses with local information
- Iteratively improve estimates
- Maintain ensemble of estimates to quantify uncertainty

Relation to existing methods

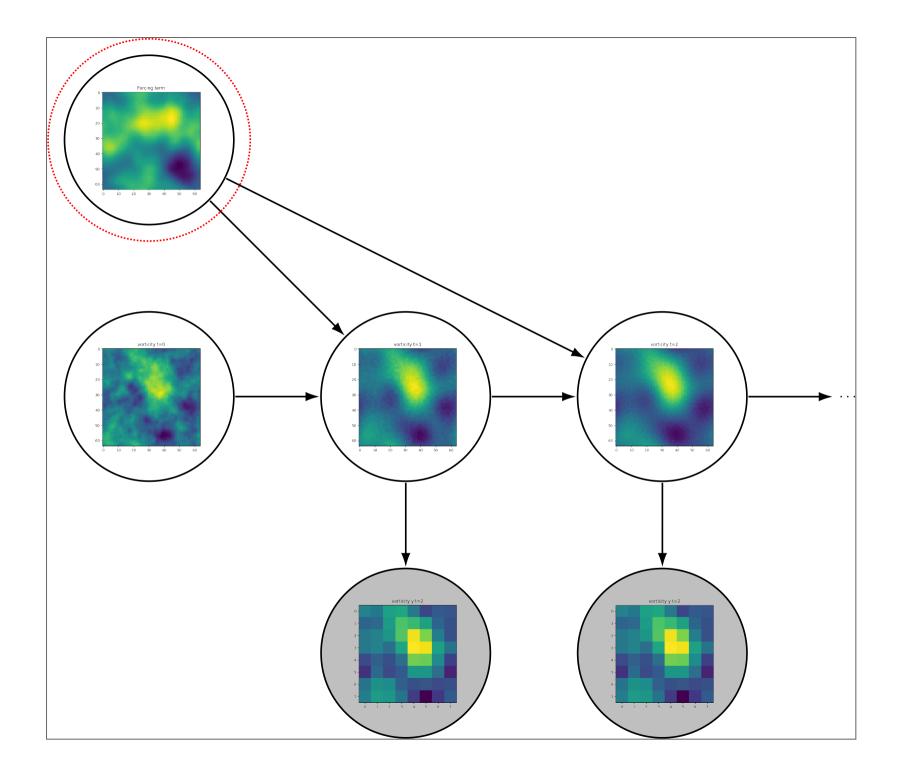


The process

	Empirical statistics	
	Generative	Density-based
Operations	SampleCondition	• Propagate
Graph type	Directed x_2 x_3	Factor x_2 x_3
Decomposition	$\mathbf{x}_3 = \mathcal{P}(\mathbf{x}_1, \mathbf{x}_2)$	$f(x_1, x_2, x_3)$
Node Parameters	Empirical moments $m{m}, ext{K}$	Canonical parameters $m{n}, \mathrm{P}$



Test Case: System Identification



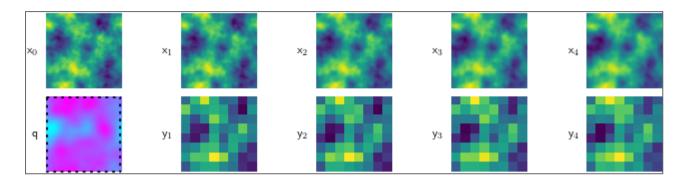


Figure 1: Low viscosity

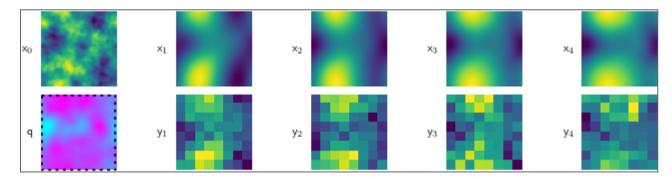


Figure 2: Medium viscosity

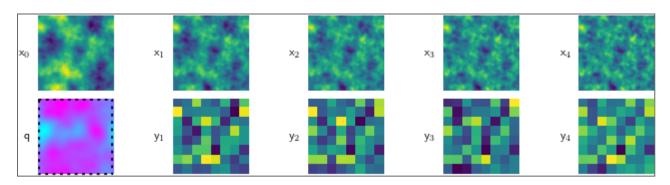


Figure 3: High viscosity

Results

Performance Comparison

Classic GaBP

.

Our GEnBP

.

Scaling to Larger Problems

Handling Different Fluid Types

Advanced Application: Reality Gap

Neural Network Emulation

Emulator Performance

Conclusion

Key Advantages

- Scalable: Handles millions of dimensions vs. thousands for GaBP
- Efficient: Better computational complexity
- Versatile: Works with existing simulators
- Accurate: Better posterior estimates in many cases
- Innovative: Bridges the gap between two research communities

Try It Yourself

- Code: github.com/danmackinlay/GEnBP
- Paper: <u>arxiv.org/abs/2402.08193</u> (<u>MacKinlay et al. 2025</u>)
- Supported by CSIRO Machine Learning and Artificial Intelligence Future Science Platform

Bonus time

Extra images

.

acKinlay, Tsuchida, Pagendam, et al. 2025. "Gaussian Ensemble Belief Propagation for Efficient Inference in High-Dimensional Systems." In Proceedings of the International Conference on Learning Representations (ICLR).

CSIRO

Speaker notes

