

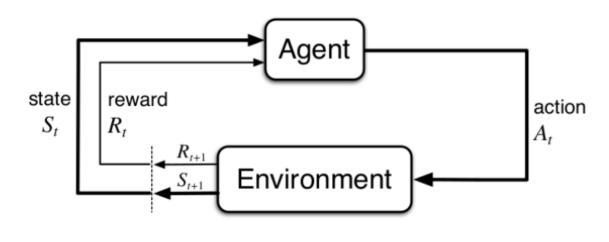
Select before Act: Spatially Decoupled Action Repetition for Continuous Control

Buqing Nie¹, Yangqing Fu¹, Yue Gao^{1,2}

¹ Shanghai Jiao Tong University ² Shanghai Innovation Institute

Motivation

- DRL methods achieve remarkable success in continuous control tasks
- DRL methods make decisions at **individual time steps** [1,2]
- No temporal consistency of action sequences
 - *inefficient* exploration [3]
 - *challenging* credit assignment, *poor* sample efficiency [4,5]

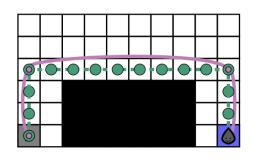


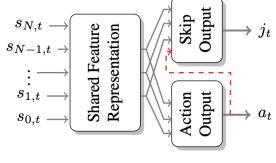
DRL decision process

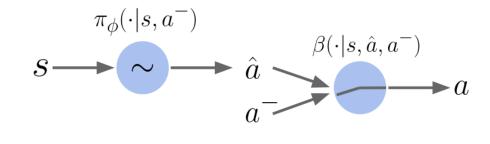
- [1] Silver, David, et al. "Deterministic policy gradient algorithms.", ICML 2014
- [2] Schulman, John, et al. "Proximal policy optimization algorithms.", ArXiv 2017.
- [3] Dabney, Will, et al. "Temporally-extended ϵ -greedy exploration." ICLR 2021.
- [4] Biedenkapp, André, et al. "Temporl: Learning when to act.", ICML 2021.
- [5] Haichao Zhang, et al. "Generative planning for temporally coordinated exploration in reinforcement learning", ICLR 2022.

Method

- Action Repetition-based RL
 - *Open-loop* methods: DAR^[6], FiGAR^[7], TempoRL^[4], UTE ^[8].
 - Closed-loop methods: PIC [9], TAAC [10]
- Higher action persistence
 - Deeper exploration, higher learning efficiency







Action Repetition

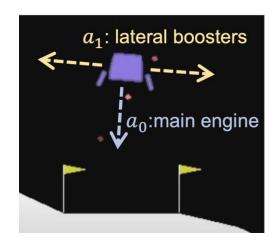
TempoRL^[4]

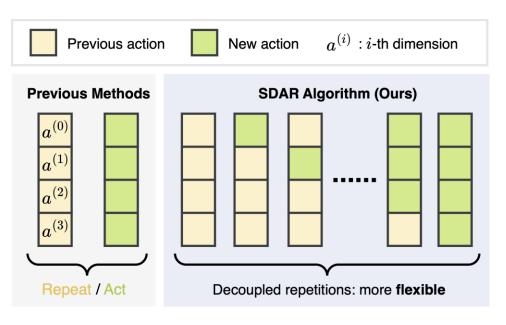
TAAC^[5]

- [6] Aravind Lakshminarayanan, et al. Dynamic action repetition for deep reinforcement learning. AAAI 2017
- [7] Sahil Sharma, et al. Learning to repeat: Fine grained action repetition for deep reinforcement learning. ICLR 2017
- [8] Joongkyu Lee, et al. Learning uncertainty-aware temporally-extended actions. AAAI 2024
- [9] Chen Chen, et al. Addressing action oscillations through learning policy inertia. AAAI 2021
- [10] Yu, Haonan, et al. "Taac: Temporally abstract actor-critic for continuous control." NeurIPS 2021.

Method: Spatially Decoupled Design

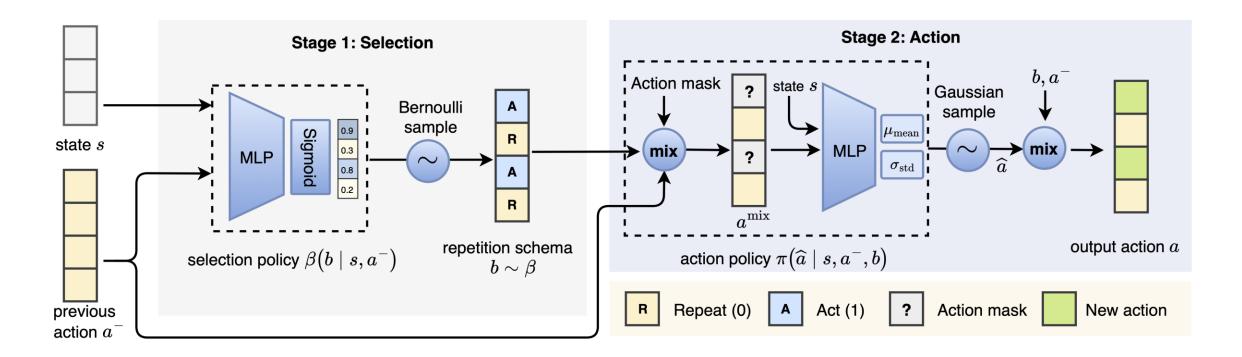
- Previous methods: two choices in each step
 - Repeat all engine actions
 - Act: make new decisions for all engines
- Spatial features are ignored
 - Inflexible repetition strategies
 - Reduce action diversity
- This work SDAR:
 - Spatially decoupled repetition strategy
 - Improve action persistence & diversity





Method: Two-stage Policy

- (1) Selection: act-or-repeat decision for each action dimension
- (2) Action: generate new actions



Method: Two-stage Policy

• Selection policy $\beta(b|s,a^-) \in [0,1]^{|A|}$



Method: Two-stage Policy

- Action policy $\pi(\hat{a}|s, a^-, b) \in A$ generate new actions
- Make masked action:

$$a^{\mathrm{mix}} = \mathrm{Mix}(b, a^-, \xi) = (1 - b) \odot a^- + b \odot \xi$$

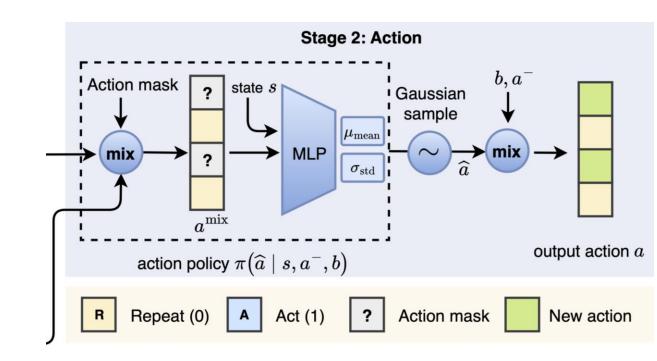
• Make new decisions â:

$$\mu_{\mathrm{mean}}, \, \sigma_{\mathrm{std}} = \mathrm{MLP}(s, a^{\mathrm{mix}})$$

$$\hat{a} = \mu_{\mathrm{mean}} + \sigma_{\mathrm{std}} \cdot n, \ \, n \sim \mathcal{N}(0, \mathcal{I})$$

Synthesize new action a

$$a = \text{Mix}(b, a^-, \hat{a}) = (1 - b) \odot a^- + b \odot \hat{a}$$



Method: How to Train SDAR

Policy Evaluation

$$\min \mathbb{E}_{(s,a) \sim \mathcal{D}} \left[Q\left(s,a\right) - \mathcal{T}Q\left(s,a\right) \right]^{2}, \text{ with } \mathcal{T}Q(s,a) = R(s,a) + \gamma \mathbb{E}_{P,\beta,\pi} \left[Q\left(s',a'\right) \right]$$

Policy Improvement

$$J(\theta^{\beta}, \theta^{\pi}) = \underbrace{\mathbb{E}_{(s, a^{-}) \sim \mathcal{D}} \mathbb{E}_{b \sim \beta, \hat{a} \sim \pi}}_{\text{make decisions on samples}} \left[\underbrace{Q(s, a)}_{\text{max } Q \text{ values}} \underbrace{-\alpha_{\beta} \log \beta \left(b | s, a^{-}\right) - \alpha_{\pi} \log \pi \left(\hat{a} | s, a^{-}, b\right)}_{\text{entropy-based exploration}} \right]$$

• Update Selection policy β :

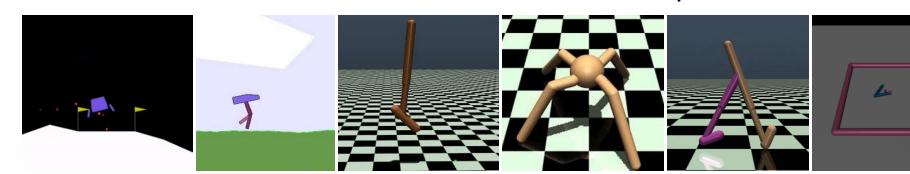
$$\max_{\theta^{\beta}} \mathbb{E}_{(s,a^{-}) \sim \mathcal{D}} \sum_{b \in \mathcal{B}} \beta(b|s,a^{-}) \mathbb{E}_{\hat{a} \sim \pi} \left[Q\left(s,a\right) - \alpha_{\beta} \log \beta \left(b|s,a^{-}\right) - \alpha_{\pi} \log \pi \left(\hat{a}|s,a^{-},b\right) \right]$$

• Update β with importance sampling:

$$\max_{\theta^{\beta}} \mathbb{E}_{\mathcal{D}} \mathbb{E}_{b \sim \beta_{\mathrm{old}}, \hat{a} \sim \pi} \left[Q\left(s, a\right) - \alpha_{\beta} \log \beta_{\mathrm{old}}\left(b | s, a^{-}\right) - \alpha_{\pi} \log \pi\left(\hat{a} | s, a^{-}, b\right) \right] \cdot \frac{\beta\left(b | s, a^{-}\right)}{\beta_{\mathrm{old}}\left(b | s, a^{-}\right)}$$

Experiment: Efficiency

Environments: Classic control / Locomotion / Manipulation



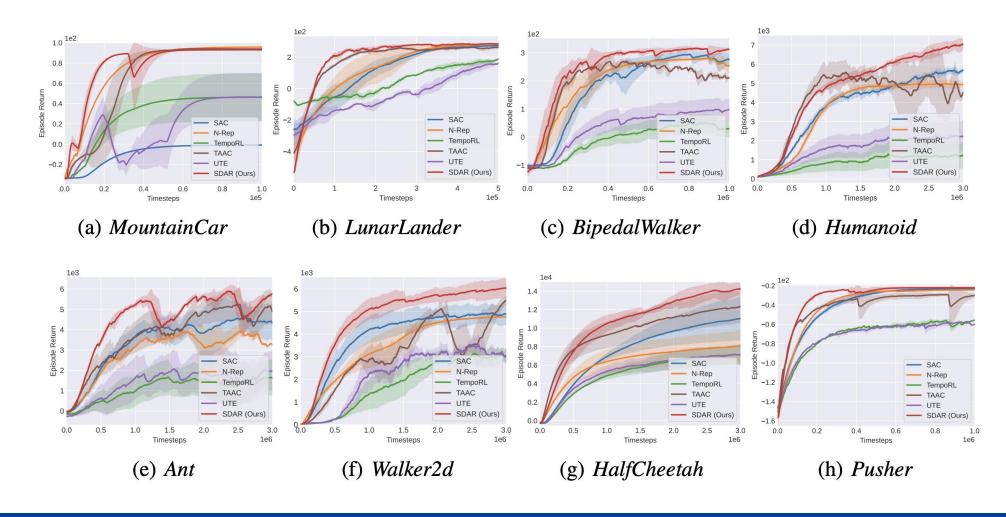
Etc.

- AUC scores:
 - SDAR achieves higher sample efficiency

Env. Category	Normalized AUC Score							
	SAC	N-Rep	TempoRL	UTE	TAAC	SDAR		
Classic Control	0.60 ± 0.13	0.89 ± 0.01	0.66 ± 0.02	0.55 ± 0.03	0.92±3E-3	1.0±0.0		
Locomotion	$0.78 \pm 2E-3$	$0.71 \pm 7E-3$	$0.35 {\pm} 0.02$	0.43 ± 0.01	$0.80 {\pm} 0.02$	$\boldsymbol{1.0 {\pm} 0.0}$		
Manipulation	$0.91 \pm 4E-5$	$0.90 \pm 8E-4$	0.77 ± 0.02	0.79 ± 0.02	$0.95 \pm 6E-3$	$\boldsymbol{1.0 {\pm} 0.0}$		
Average	0.76 ± 0.02	0.83 ± 0.01	0.59 ± 0.05	0.59 ± 0.03	$0.90\pm6E-3$	1.0±0.0		

Experiment: Efficiency

- Learning curves:
 - SDAR (red) achieves higher sample efficiency



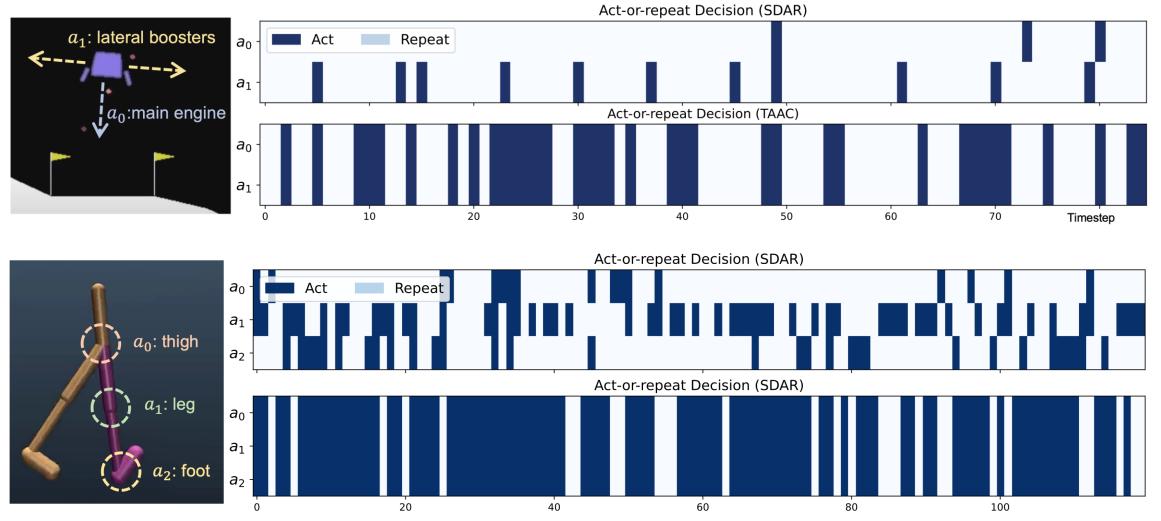
Experiment: Persistence

- SDAR > previous closed-loop methods > open-loop methods
- SDAR: higher return, higher persistence, lower fluctuation

Tasks	Episode Return (Mean \pm Standard Error)								
	Action Persistence Rate (APR) Action Fluctuation Rate (AFR)								
	SAC	N-Rep	TempoRL	UTE	TAAC	SDAR (Ours)			
LunarLander _	275.9±6.83	280.8±1.21	281.5±7.22	282.8±8.74	261.4±18.9	282.2±5.84			
	1.00 / 0.09	4.00 / 0.08	1.43 / 0.18	1.38 / 0.36	3.05 / 0.11	11.18 / 0.10			
Walker2d	5305±367	4724±163	2866±897	2986±836	5660±394	6028±406			
	1.00 / 0.15	4.00 / 0.09	5.74 / 0.26	7.81 / 0.24	1.30 / 0.22	2.96 / 0.12			
HalfChee.	13122±2877	8378±1753	8065±1799	7917±293	11148±3921	15131±1279			
	1.00 / 0.68	2.00 / 0.47	2.10 / 0.66	2.69 / 0.58	1.02 / 0.61	1.22 / 0.62			
Humanoid	6184±717	5074±310	1022±397	2595±334	7308±244	7483±288			
	1.00 / 0.28	4.00 / 0.09	5.27 / 0.15	5.69 / 0.18	1.21 / 0.25	1.67 / 0.19			
Pusher	-22.5±1.40	-21.2±1.08	-48.2±2.05	-41.3±5.56	-30.5±1.85	-21.3±1.26			
	1.00 / 0.022	4.00 / 0.019	1.15 / 0.032	1.01 / 0.018	1.75 / 0.031	1.69 / 0.015			
Average	0.89 ± 0.07	0.81±0.19	0.59±0.33	0.64 ± 0.27	0.91±0.10	1.00±0.001			
	1.00 / 0.245	3.60 / 0.150	3.12 / 0.257	3.71 / 0.276	1.66 / 0.244	3.75 / 0.208			

Experiment: Visualization

SDAR is more flexible than previous method (TAAC)



Conclusion

- Spatially decoupled action repetition
 - More flexible repetition strategy
 - Higher persistence & diversity
 - Higher efficiency and final performance
- First work to consider **spatial features** in temporal abstraction / action repetition
- Future works:
 - How to learn synergy more efficiently
 - How to share/transfer β policy in different tasks
 - Incorporate into other RL methods

Thank You!

Buqing Nie¹, Yangqing Fu¹, Yue Gao^{1,2}

¹ Shanghai Jiao Tong University ² Shanghai Innovation Institute