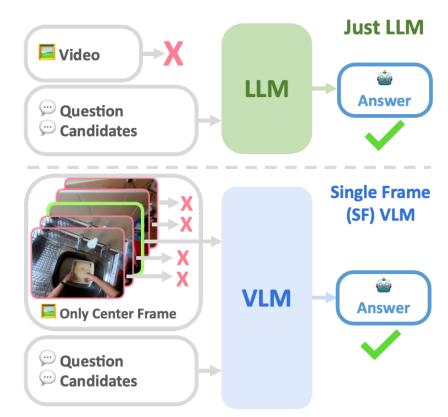


Understanding Long Videos with Multimodal Language Models

Kanchana Ranasinghe, Xiang Li, Kumara Kahatapitiya, Michael S. Ryoo

Video Understanding with LLMs

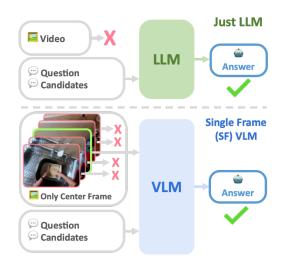
- LLMs contain extensive world knowledge & reasoning skills
- How does this effect video tasks?
- Strong performance on video benchmarks maybe misleading!



Video Understanding with LLMs

- LLMs solve some video QnA tasks significantly better than random with no video information! (similar findings in [2])
- Solve temporal tasks with single frame inputs...

Method	Param	Video Frames	ES-S		NextQA-T	
			Acc	Time	Acc	Time
Random	-	-	20.0	_	20.0	-
Just-LLM SF-VLM	7B 13B	0 1	45.8 55.8	0.41 1.89	40.1 51.2	0.55 2.03
SOTA [1]	20B	180	50.8	381	54.3	207



^[1] Zhang, Ce et al. "A Simple LLM Framework for Long-Range Video Question-Answering." EMNLP 2023.

^[2] Min, Juhong et al. "MoreVQA: Exploring modular reasoning models for video guestion answering." CVPR 2024.

Why is this a problem?

- Strong performance on such benchmarks may not generalize
 - Possibly ignores important <u>video specific</u> information
 - Does not need these since LLM shortcuts with strong world knowledge & reasoning
- Spurious, unexpected performance on real world deployments

SOLUTION:

- 1) Explicit Motion Specific Information
- 2) Visual Grounding of Information
- 3) More Interpretable Framework

Question x_t :

Taking into account all the actions performed by c, what can you deduce about the primary objective and focus within the video content?

Video x_v :

Candidate answer set Y:

 y_1 : C is cooking

 y_2 : C is doing laundry

 $oldsymbol{y_3}$: C is cleaning the kitchen

 y_4 : C is cleaning dishes

 y_5 : C is cleaning the bathroom

Question x_t :

Taking into account all the actions performed by c, what can you deduce about the primary objective and focus within the video content?

Video x_v :

Candidate answer set Y:

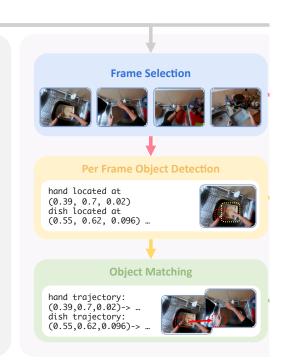
 y_1 : C is cooking

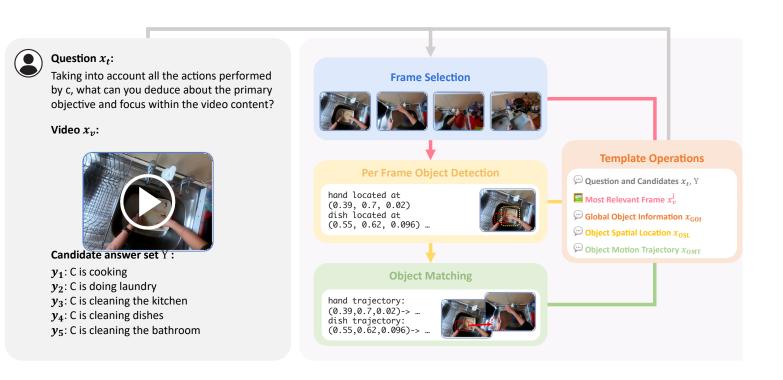
 y_2 : C is doing laundry

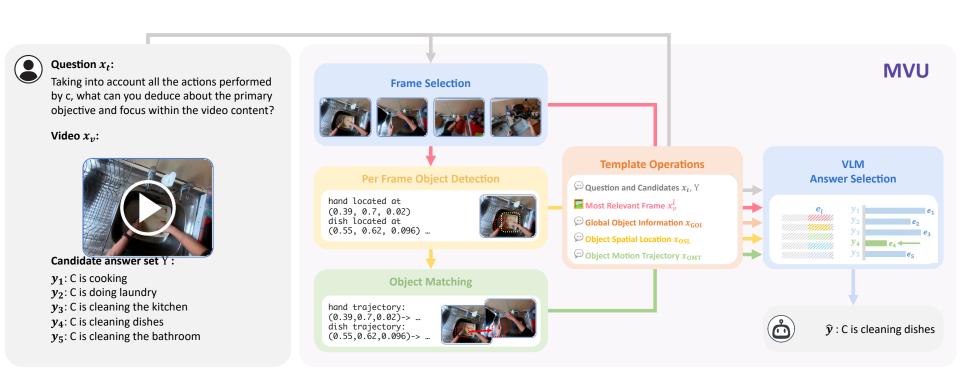
 y_3 : C is cleaning the kitchen

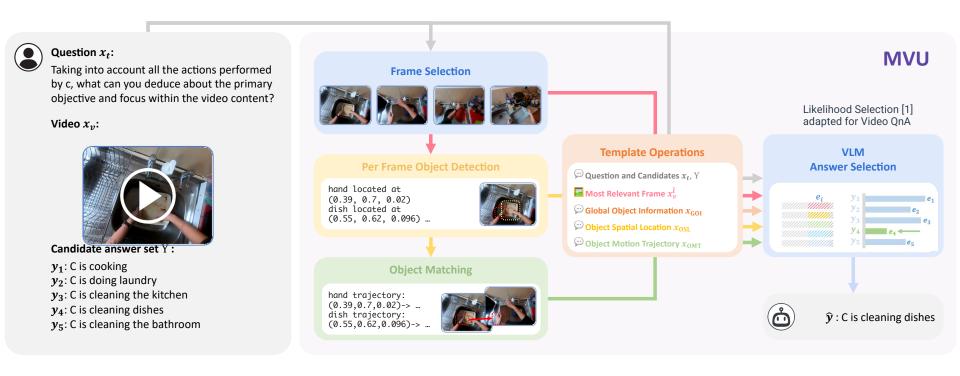
 y_4 : C is cleaning dishes

 y_5 : C is cleaning the bathroom









Per Frame Object Detection

hand located at (0.39, 0.7, 0.02) dish located at (0.55, 0.62, 0.096) ...

Object Matching

hand trajectory: (0.39,0.7,0.02)-> ... dish trajectory: (0.55,0.62,0.096)-> ...

- Unique objects across video
- Trajectories of each object

Encode <u>object trajectories</u>
 explicitly in natural language

Represent motions as string of (x,y) sequence

"Spice Bottle Trajectory: (0.13,0.20) -> (0.16,0.24) -> (0.17, 0.36)

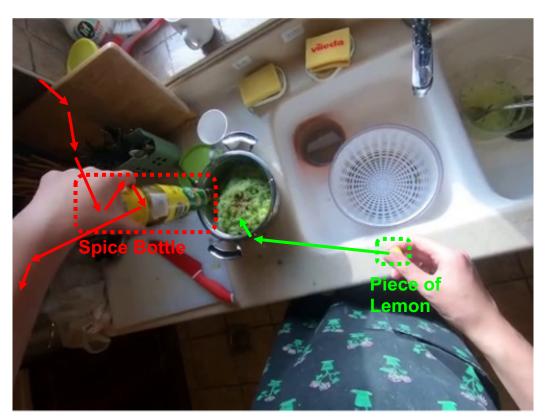
. ->(0.02, 0.64)"

Represent motions as string of (x,y) sequence

"Spice Bottle Trajectory: (0.13,0.20) -> (0.16,0.24) -> (0.17, 0.36)

' '

->(0.02, 0.64)"



Represent motions as string of (x,y) sequence

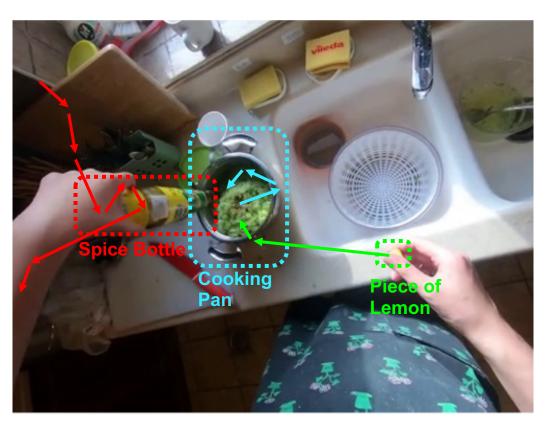
"Piece of Lemon Trajectory: (0.64,0.58) -> (0.48,0.52) -> (0.46, 0.49)"

Represent motions as string of (x,y) sequence

"Spice Bottle Trajectory: (0.13,0.20) -> (0.16,0.24) -> (0.17, 0.36)

.

->(0.02, 0.64)"



Represent motions as string of (x,y) sequence

"Piece of Lemon Trajectory: (0.64,0.58) -> (0.48,0.52) -> (0.46, 0.49)"

Represent motions as string of (x,y) sequence

"Cooking Pan Trajectory: (0.46,0.47) -> (0.52,0.44) -> (0.47, 0.40) -> (0.45, 0.45)"

Sample Prompt

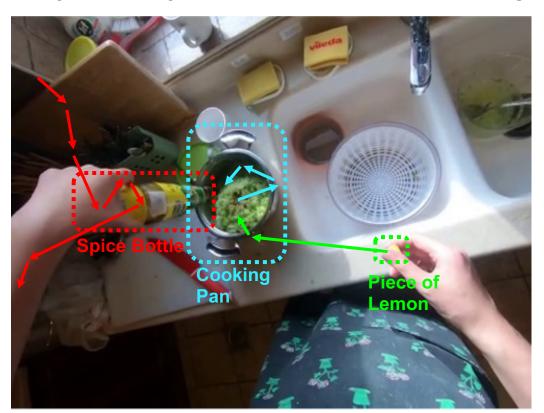
```
"Consider following objects moving along (x, y) trajectories in video to answer the question:" + "Piece of Lemon Trajectory: (0.64,0.58) -> (0.48,0.52) -> (0.46, 0.49)" + "Spice Bottle Trajectory: (0.13,0.20) -> 0.16,0.24) -> (0.17, 0.36) . . . -> (0.02, 0.64)" + "Cooking Pan Trajectory: (0.46,0.47) -> (0.52,0.44) -> (0.47, 0.40) -> (0.45, 0.45)" + ". What does the person do after adding spice to the dish?"
```

Sample Response

"The person adds lime to the dish."

NOTE: Area / dimensions / frame index data omitted in example. The (x,y) can be replaced with (x,y,h,w,t).

[1] Zeng, Andy et al. "Socratic Models: Composing Zero-Shot Multimodal Reasoning with Language." ICLR 2023.



```
"Piece of Lemon Trajectory: (0.64,0.58) -> (0.48,0.52) -> (0.46, 0.49)" +
"Spice Bottle Trajectory: (0.13,0.20) -> 0.16,0.24) -> (0.17, 0.36) . . . -> (0.02, 0.64)" +
"Cooking Pan Trajectory: (0.46,0.47) -> (0.52,0.44) -> (0.47, 0.40) -> (0.45, 0.45)" +
```

Obtaining Trajectories?

Use off-the-shelf object detector and tracker

- Much faster than generative VLM
- Can apply more densely on frames
- Spatial grounding gives interpretability
- Tracking reduces hallucinations

Evaluations

Video QnA: EgoSchema

Method	Zero Shot	Video Training	Closed Model	Params	Full
Random Selection	-	-	-	-	20.0
VIOLET (Fu et al., 2022)	✓	1	Х	198M	19.9
FrozenBiLM (Yang et al., 2022)	✓	✓	X	1.2B	26.9
SeViLA (Yu et al., 2024)	✓	✓	X	4B	22.7
mPLUG-Owl (Ye et al., 2023b)	✓	✓	X	7.2B	31.1
InternVideo (Wang et al., 2022)	✓	✓	X	478M	32.1
ImageViT (Papalampidi et al., 2023)	Х	✓	X	1B	30.9
SeViLA+ShortViViT (Papalampidi et al., 2023)	Х	✓	X	5B	31.3
LongViViT (Papalampidi et al., 2023)	Х	✓	X	1B	33.3
MC-ViT-L (Balavzevi'c et al., 2024)	Х	✓	X	424M	44.4
InternVideo2 (Wang et al., 2024b)	✓	✓	X	7B	55.8
Tarsier (Wang et al., 2024a)	✓	✓	X	7B	49.9
Tarsier (Wang et al., 2024a)	✓	✓	X	34B	61.7
Vamos (Wang et al., 2023a)	✓	X	X	13B	36.7
LLoVi (Zhang et al., 2023a)	✓	X	X	13B	33.5
LangRepo (Kahatapitiya et al., 2024)	✓	X	X	12B	41.2
Vamos (Wang et al., 2023a)	✓	X	✓	1.8T	48.3
LLoVi (Zhang et al., 2023a)	✓	X	✓	1.8T	50.3
LifelongMemory (Wang et al., 2023b)	✓	X	✓	1.8T	62.4
MoreVQA (Min et al., 2024)	✓	X	✓	_	51.7
VideoAgent (Wang et al., 2025)	✓	X	✓	1.8T	54.1
VideoTree (Wang et al., 2024c)	✓	X	✓	1.8T	61.1
LVNet (Park et al., 2024)	✓	X	✓	1.8T	61.1
SF-VLM (ours)	✓	Х	Х	13B	36.4
SF-VLM + MVU (ours)	✓	×	×	13B	37.6
LVNet + MVU (ours)	✓	×	✓	1.8T	61.3

- Strong results on EgoSchema dataset
- Easy integration with SOTA methods like LVNet [1]

Video QnA: NextQA

Method	ZS	VT	Params	Cau.	Tem.	Des.	All
Random Selection	-	-		20.0	20.0	20.0	20.0
CoVGT (Xiao et al., 2023)	Х	1	149M	58.8	57.4	69.3	60.0
SeViT (Kim et al., 2023)	X	1	215M	-	-	-	60.6
HiTeA (Ye et al., 2023a)	X	1	297M	62.4	58.3	75.6	63.1
InternVideo (Wang et al., 2022)	X	1	478M	62.5	58.5	75.8	63.2
MC-ViT-L (Balavzevi'c et al., 2024)	X	1	424M	-	-	-	65.0
BLIP-2 (Li et al., 2023a)	X	1	4B	70.1	65.2	80.1	70.1
SeViLA (Yu et al., 2024)	X	1	4B	74.2	69.4	81.3	73.8
LLama-VQA-7B (Ko et al., 2023)	X	1	7B	72.7	69.2	75.8	72.0
Vamos (Wang et al., 2023a)	X	✓	7B	72.6	69.6	78.0	72.5
Just-Ask (Yang et al., 2021)	✓	1	66M	31.8	30.4	36.0	38.4
VFC (Momeni et al., 2023)	✓	✓	164M	45.4	51.6	64.1	51.5
InternVideo (Wang et al., 2022)	✓	✓	478M	43.4	48.0	65.1	49.1
SeViLA(Yu et al., 2024)	✓	✓	4B	61.3	61.5	75.6	63.6
CaKE-LM (Su et al., 2023)	✓	Х	2.7B	35.7	35.3	36.8	34.9
LLoVi (Zhang et al., 2023a)	✓	X	13B	55.6	47.9	63.2	54.3
ViperGPT (Surís et al., 2023)	✓	X	175B	-	-	-	60.0
LLoVi (Zhang et al., 2023a) (GPT-4)	✓	X	1.8T	69.5	61.0	75.6	67.7
MoreVQA (Min et al., 2024)	✓	X	1.7T	70.2	64.6	-	69.2
VideoAgent (Wang et al., 2025)	✓	X	1.7T	72.7	64.5	81.1	71.3
VideoTree (Wang et al., 2024c)	✓	X	1.7T	75.2	67.0	81.3	73.5
LVNet (Park et al., 2024)	✓	X	1.8T	75.0	65.5	81.5	72.9
SF-VLM + MVU (ours)	✓	Х	13B	55.7	48.2	64.2	55.4
LVNet + MVU (ours)	✓	Х	1.8T	75.2	66.8	81.3	73.3

- Strong results on NextQA dataset
- Easy integration with SOTA methods like LVNet [1]

^[1] Park, Jongwoo et al. "Too Many Frames, not all Useful: Efficient Strategies for Long-Form Video QA." NeurIPS-W 2024.

More Evaluations

Method	Acc (%)
Phi-3-Vision-Instruct (Abdin et al., 2024)	49.7
Phi-3-Vision-Instruct + MVU	50.4

Longer Videos: MVU can improve performance on longer video benchmarks such as LongVideoBench.

Method	OMT	Accuracy
Random	-	0.6
CLIP (Radford et al., 2021)	-	4.0
MAXI (Lin et al., 2023b)	-	6.4
MVU (ours)	Х	3.6
MVU (ours)	✓	7.2

Motion Ablation on SSv2: We use the motion focused SSv2 dataset for a special ablation of our MVU's explicit motion information, establishing its clear usefulness in recognizing motion patterns.

Dataset	Obs.	Size	CC	Random	Baseline	MVU
ASU TableTop Manipulation	T	110	83	13.6	19.1	20.9
Berkeley MVP Data	F	480	6	20	26.0	33.1
Berkeley RPT Data	F	908	4	24.6	23.1	26.2
CMU Play Fusion	T	576	44	20.3	34.0	35.6
CMU Stretch	T	135	5	23	18.5	24.4
Furniture Bench	T	5100	9	20.2	24.8	26.4
Furniture Bench	F	5100	9	20.2	22.6	24.9
CMU Franka Pick-Insert Data	T	631	7	18.7	19.3	21.2
CMU Franka Pick-Insert Data	F	631	7	23.1	57.8	49.3
Imperial F Cam	T	170	17	20	22.9	24.1
Imperial F Cam	F	170	17	23.5	20.6	24.7
USC Jaco Play	T	1085	89	21.8	26.4	30.6
USC Jaco Play	F	1085	89	19.4	28.6	32.4
NYU ROT	T	14	12	21.4	57.1	57.1
Roboturk	T	1959	3	34.7	43.0	44.2
Stanford HYDRA	T	570	3	35.1	54.7	68.2
Stanford HYDRA	F	570	3	31.2	45.3	48.9
Freiburg Franka Play	F	3603	406	20.4	32.2	31.6
Freiburg Franka Play	T	3603	406	19.7	21.8	24.0
LSMO Dataset	T	50	2	34.0	68.0	72.0
UCSD Kitchen	T	150	8	19.3	32.0	32.7
Austin VIOLA	T	150	3	26.7	32.7	33.3
Austin VIOLA	F	150	3	30.0	33.3	34.0
Total	-	27000	-	22.1	28.5	30.4

OOD Generalization: MVU works on Robotics Domain tasks constructed from OpenX-Embodiment Dataset.

Summary of Contributions

- Highlight issues of LLM based Video QnA
- 2. Build efficient setup for LLM-based video QnA
- 3. Propose Framework to use Video-Specific information
 - a. Extraction of Object Centric information
 - b. Language based fusion with VLM
- 4. Evaluation across established video QnA benchmarks

Our MVU framework performs from strong video QnA with better interpretability.