

Differential Transformer

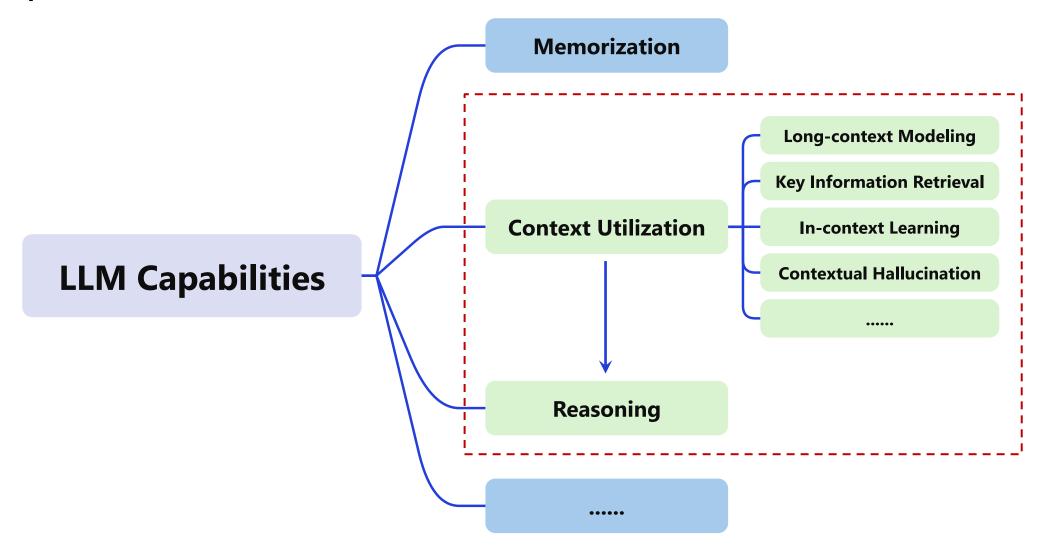
Tianzhu Ye*1, Li Dong*2, Yuqing Xia*2, Yutao Sun*1 Yi Zhu², Gao Huang^{†1}, Furu Wei^{†2}

Tsinghua University¹, Microsoft Research²

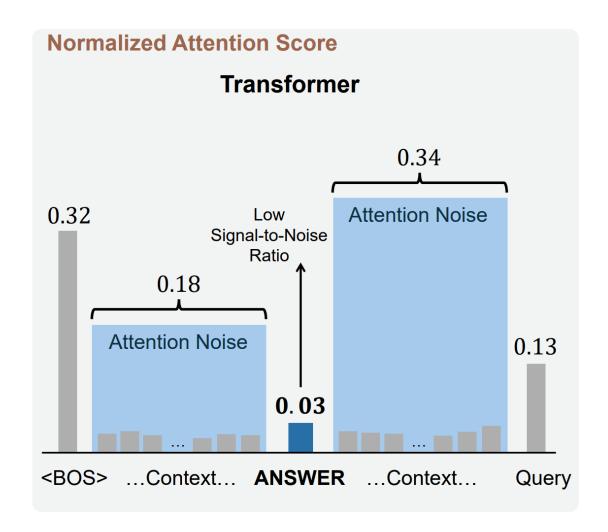
Presenter: Tianzhu Ye

ytz24@mails.tsinghua.edu.cn

LLM Capabilities

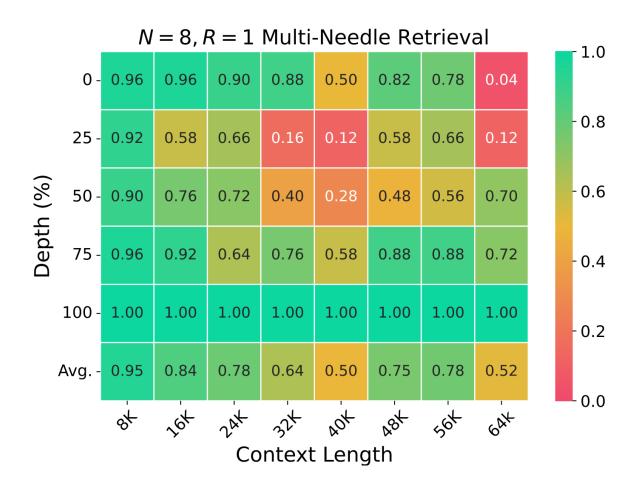


Motivation



- Key information embedded in a pile of documents
- Small attention to the answer
- Over-attend irrelevant context
- "Attention Noise"

Motivation

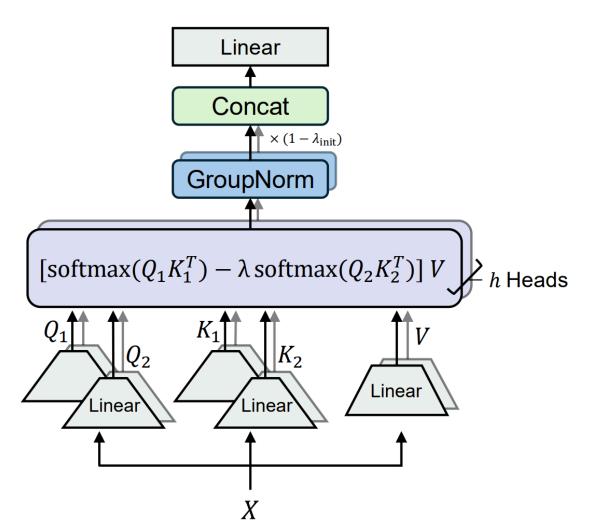


- Leads to low accuracy in the retrieval task
- Caused by properties of Softmax function:

$$Softmax(z_i) = \frac{e^{z_i}}{\sum_{j=1}^n e^{z_j}}$$

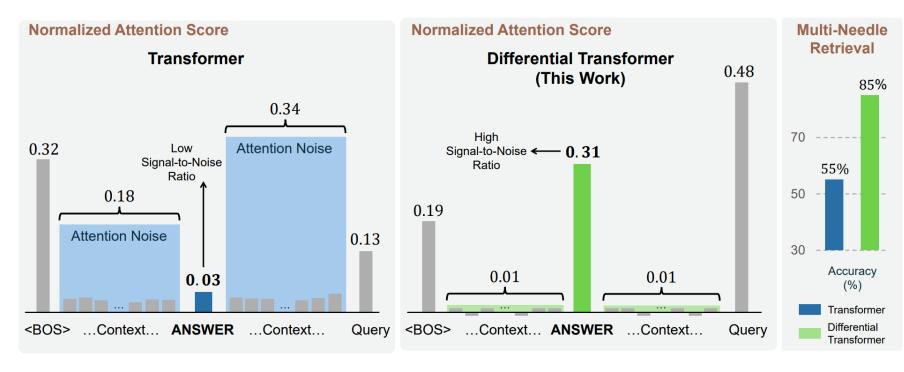
- I. All positive
- II. Sparsity → Wide input → Instability

Method



- Differential Attention
- Taking the difference between a pair of Softmax
- Break Softmax properties:
 - I. Zero (and negative) weights[Sparse in forward]
 - II. No need for each Softmax to be sparse[Dense in backward]
- Keep gradient properties of each Softmax
- No human priors. Let the model decide

Key Information Retrieval



Sparse attention pattern

(a) Transformer

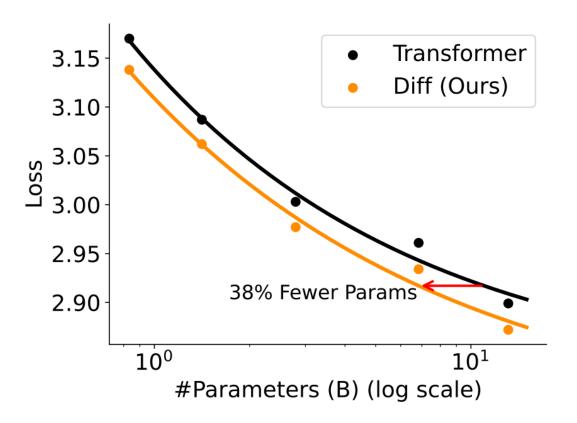
(b) DIFF

Model	Attention to Answer ↑					Attention Noise ↓				
Model	0%	25%	50%	75%	100%	0%	25%	50%	75%	100%
Transformer	0.03	0.03	0.03	0.07	0.09	0.51	0.54	0.52	0.49	0.49
	0.27	0.30	0.31	0.32	0.40	0.01	0.02	0.02	0.02	0.01

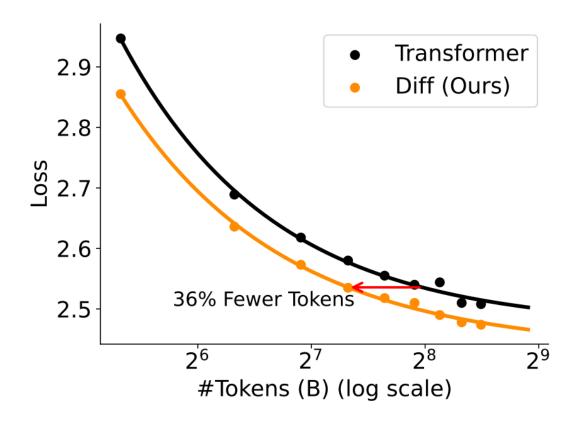
High signal-to-noise ratio

Scaling Model Size and Training Tokens

• About **35%** fewer params or tokens compared to Transformer



(a) Scaling model size from 830M to 13B



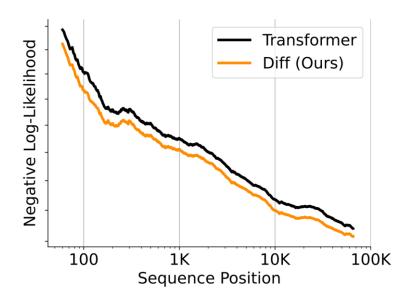
(b) Scaling training tokens of 3B model

Scaling Training Tokens and Sequence Length

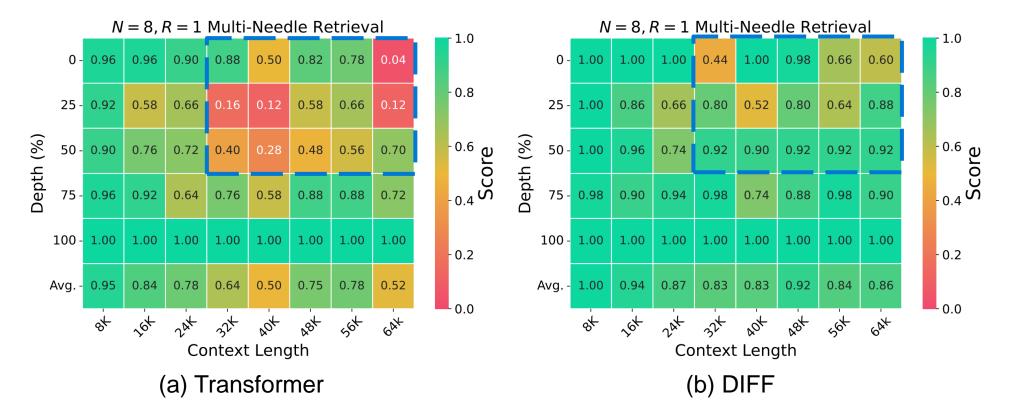
Scaling training tokens to 1T and compare with well-trained Transformer-based models

Model	ARC-C	ARC-E	BoolQ	HellaSwag	OBQA	PIQA	WinoGrande	Avg
Training with 1T tokens								
OpenLLaMA-3B-v2 [13]	33.9	67.6	65.7	70.0	26.0	76.7	62.9	57.5
StableLM-base-alpha-3B-v2 [39]	32.4	67.3	64.6	68.6	26.4	76.0	62.1	56.8
StableLM-3B-4E1T [40]		66.6		_		76.8	63.2	
DIFF-3B	37.8	72.9	69.0	71.4	29.0	76.8	67.1	60.6

- Scaling sequence length to 64K
- Consistent lower NLL
- Leverages long context more effectively



Key Information Retrieval



- 8K~64K length
- Particularly in the first half depth

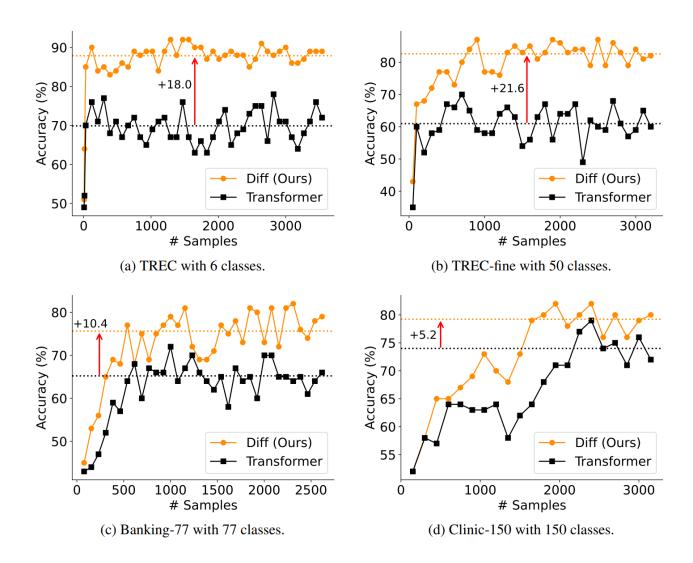
Model N = 1 N = 2 N = 4 N = 6 R = 1 R = 2 R = 2 R = 2

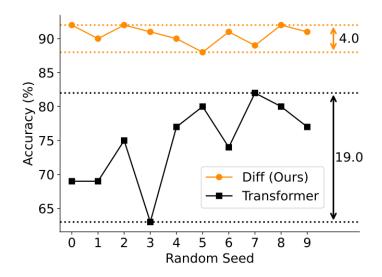
 Transformer
 1.00
 0.85
 0.62
 0.55

 DIFF
 1.00
 0.92
 0.84
 0.85

- 4K length, averaged across depths
- Gains still exist in relatively short context

In-context Learning





- Many-shot in-context learning
- Robustness to permutation

Contextual Hallucination Evaluation

InstructBLIP:

In the image, a young man is performing a skateboarding trick in a residential area. He is riding a skateboard and jumping over a tree trunk that is lying on the ... away from him. Additionally, there are two cars parked in the area, likely belonging to residents or visitors of the neighborhood.

•	Previous research:
	hallucination may come from attention misallocation

 Contextual hallucination evaluation with text summarization and QA

Model	XSum	CNN/DM	MultiNews
Transformer	0.44	0.32	0.42
DIFF	0.53	0.41	0.61

Model	Qasper	HotpotQA	2WikiMQA
Transformer	0.28	0.36	0.29
DIFF	0.39	0.46	0.36

(a) Summarization

(b) QA

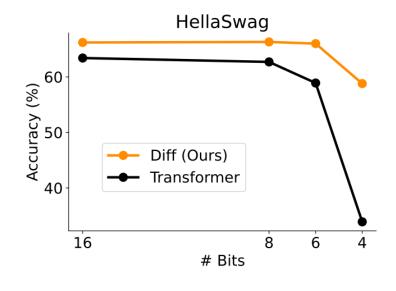
Huang, Qidong, et al. "Opera: Alleviating hallucination in multi-modal large language models via over-trust penalty and retrospection-allocation." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2024.

Activation Outliers Analysis

Model	Activation Type	Top-1	Top-2	Top-3	Top-10	Top-100	Median
Transformer	Attention Logits	318.0	308.2	304.9	284.7	251.5	5.4
DIFF	Attention Logits	38.8	38.8	37.3	32.0	27.4	3.3
Transformer DIFF	Hidden States	3608.6	3607.4	3603.6	3552.1	2448.2	0.6
	Hidden States	1688.2	1672.5	1672.1	1624.3	740.9	1.2

- Suppressing activation outliers
- Lower bits when quantizing attention logits
- Intuition: (observed in previous research as well)

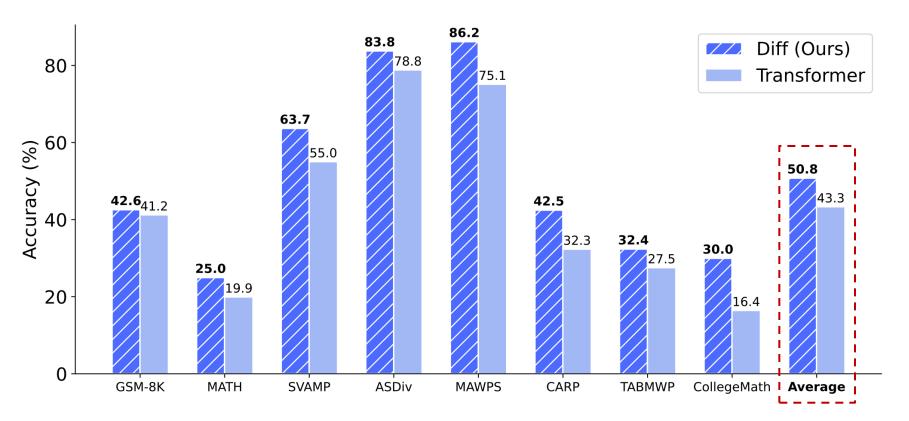
Obtain zeros in attention scores & reduce over-attended tokens

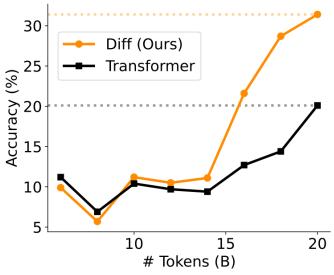


Bondarenko, Yelysei, Markus Nagel, and Tijmen Blankevoort. "Quantizable transformers: Removing outliers by helping attention heads do nothing." *Advances in Neural Information Processing Systems* 36 (2023): 75067-75096.

Sun, Mingjie, et al. "Massive Activations in Large Language Models." ICLR 2024 Workshop on Mathematical and Empirical Understanding of Foundation Models."

Mathematical Reasoning Evaluation





- Two-stage fine-tuning
- Evaluation of o1-style mathematical reasoning

Indicates strong connection between context utilization and reasoning ability

Take-away Messages

- Cancel out attention noise by taking the difference between a pair of Softmax functions
- Enhance LLM's capability of utilizing context, including long-context modeling, key information retrieval,
 in-context learning, mathematical reasoning, mitigating contextual hallucination

Future Work

- Low-bit attention kernels
- Compress key-value caches with sparse attention patterns
- Explore applications in other modalities¹
- More theoretical analysis²

^{1.} Hammoud, Hasan Abed Al Kader, and Bernard Ghanem. "DiffCLIP: Differential Attention Meets CLIP." arXiv preprint arXiv:2503.06626 (2025).

^{2.} Naderi, Alireza, Thiziri Nait Saada, and Jared Tanner. "Mind the Gap: a Spectral Analysis of Rank Collapse and Signal Propagation in Transformers." *arXiv* preprint *arXiv*:2410.07799 (2024).

- Poster Session 4, Fri 25 Apr 3 p.m. 5:30 p.m.
- Code is available at https://aka.ms/Diff-Transformer
- Email: ytz24@mails.tsinghua.edu.cn
- Thank you!

