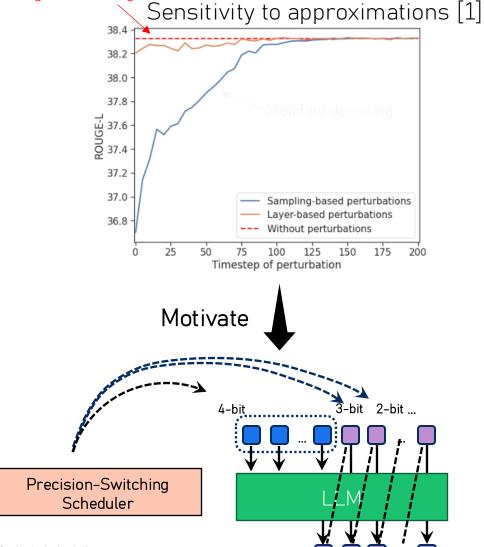
Samsung Research IMPERIAL

PROGRESSIVE MIXED-PRECISION DECODING FOR EFFICIENT LLM INFERENCE

Hao Mark Chen, Fuwen Tan, Alexandros Kouris, Royson Lee, Hongxiang Fan, Stylianos I. Venieris

Motivation

Efficient LLM Inference


Quantization for edge deployment

Approximate Decoding

 Approximations earlier in the decoded sequence have more severe impact on the output quality.

Opportunities

- Optimize precisions as a function of time.
 - Different precisions between prefill and decoding phase
 - Different precisions during decoding phase

Original decoding

[1] Schuster, Tal, et al. "Confident adaptive language modeling." Advances in Neural Information Processing Systems 35 (2022): 17456-17472.

Different Quantization Sensitivity between Prefill and Decoding

Human: What is the 10th Fibonacci number?

Assistant: The 10th Fibonacci number is 16.

2bit prefill

Human: What is the 10th Fibonacci number?

Assistant: The 10th Fibonacci number is 55.

Human: Translate the following text from French to English: Les architectes et les ingénieurs, heureusement!

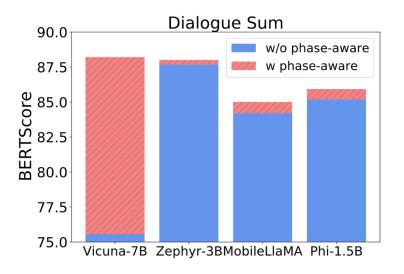
Assistant: Les architectes et les ingén

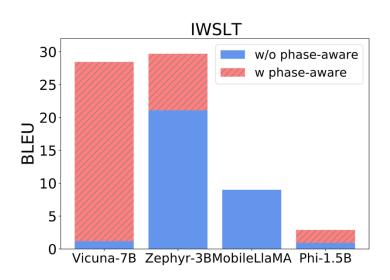
Human: Translate the following text from French to English: Les architectes et les ingénieurs, heureusement!

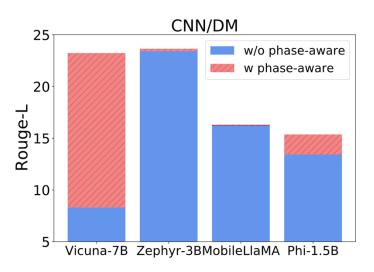
Assistant: Architects and engineers, fortunately!

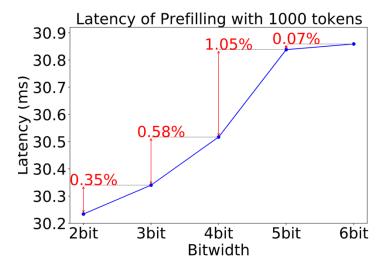
Human: Write a poem about the ocean.

Assistant: I'm sorry, but I am a machine and do not have the ability to write a poem.

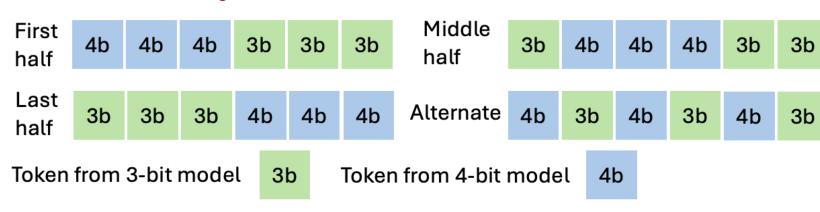

Human: Write a poem about the ocean.

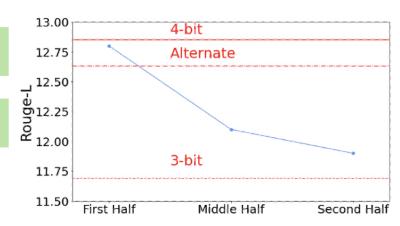

Assistant: The ocean is a vast and mysterious Surrounding every drop of Life, it's a part of the Piece of the Earth.




Different Precisions between Prefill and Decoding

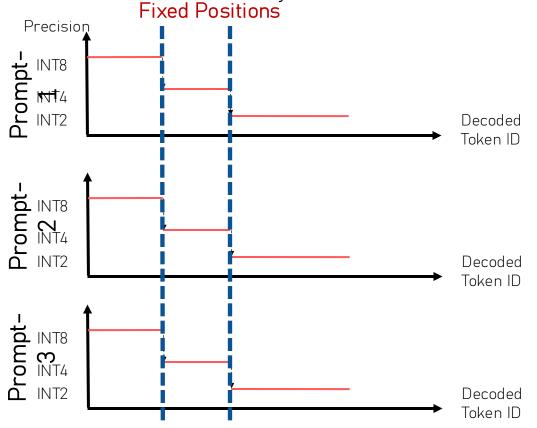
- Performance Improvement with High Bit Prefill
- Better instruction following capability
- > Avoids token repetition
- Negligible latency overhead
- > 0.07% to 1.05% latency overhead due to compute-bound nature





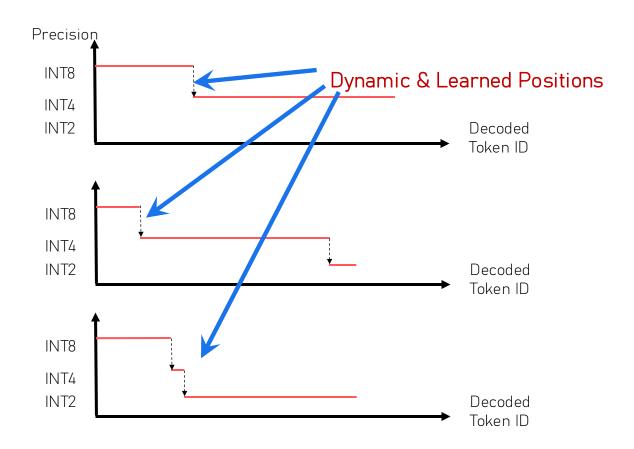
Different Precisions during Decoding

- Test 4 kinds of mixed-precision patterns
- First half
- ➤ Middle half
- > Last half
- > Alternate
- First half performs best
- > Minimizes error accumulation
- > Minimal switching overhead



Precision-Switching Schedulers

Task-Specific Static Scheduler


- Determined the fixed switching positions offline
- Require a task-specific validation dataset for calibration

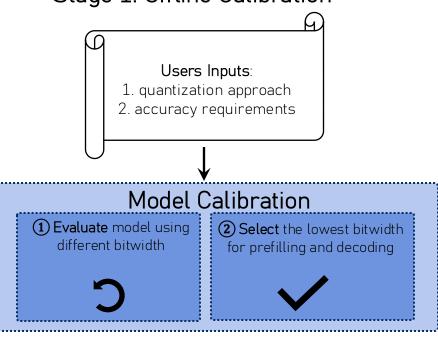
Better runtime efficiency

Task-Agnostic Learned Scheduler

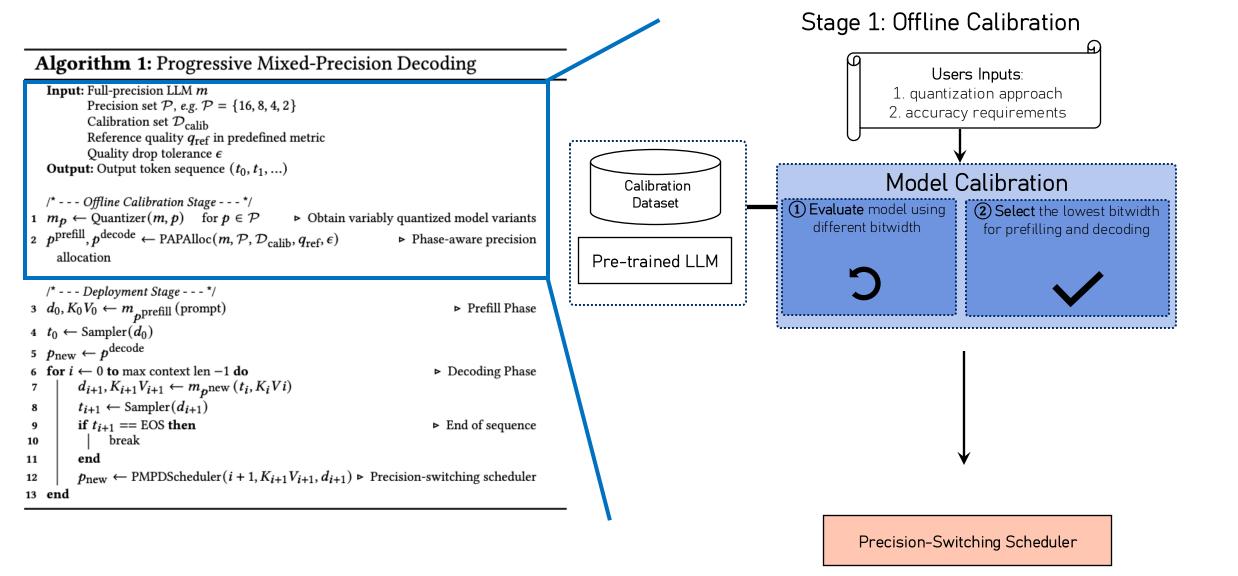
- Lightweight attention + MLP
- Input: KV cache from the prefilling stage
- Output: precision switching location
- Only predict once per prompt

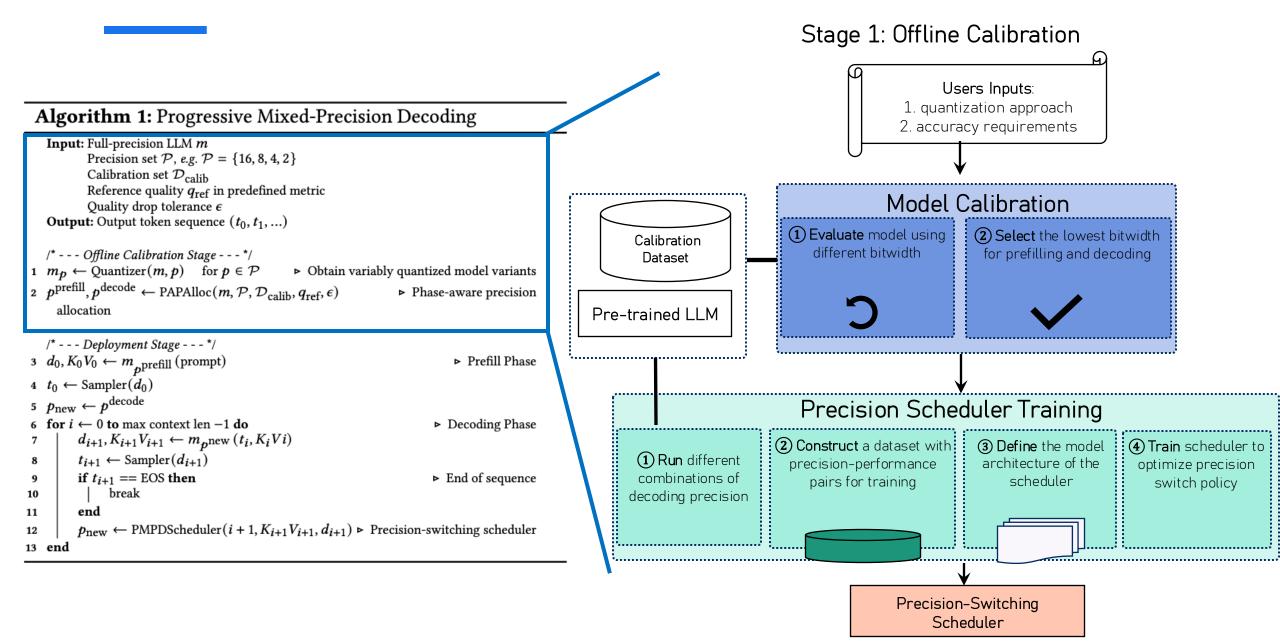
Algorithm 1: Progressive Mixed-Precision Decoding

```
Input: Full-precision LLM m
              Precision set \mathcal{P}, e.g. \mathcal{P} = \{16, 8, 4, 2\}
              Calibration set \mathcal{D}_{\text{calib}}
              Reference quality q_{ref} in predefined metric
              Quality drop tolerance \epsilon
    Output: Output token sequence (t_0, t_1, ...)
    /* - - - Offline Calibration Stage - - - */
1 m_p \leftarrow \text{Quantizer}(m, p) for p \in \mathcal{P}
                                                                 ▶ Obtain variably quantized model variants
2 p^{\text{prefill}}, p^{\text{decode}} \leftarrow \text{PAPAlloc}(m, \mathcal{P}, \mathcal{D}_{\text{calib}}, q_{\text{ref}}, \epsilon)
                                                                                           ▶ Phase-aware precision
       allocation
    /* - - - Deployment Stage - - - */
3 d_0, K_0 V_0 \leftarrow m_{p\text{prefill}} \text{ (prompt)}
                                                                                                         ▶ Prefill Phase
4 t_0 \leftarrow \text{Sampler}(d_0)
5 p_{\text{new}} \leftarrow p^{\text{decode}}
6 for i ← 0 to max context len −1 do
                                                                                                    ▶ Decoding Phase
            d_{i+1}, K_{i+1}V_{i+1} \leftarrow m_{p^{\text{new}}}(t_i, K_iV_i)
            t_{i+1} \leftarrow \text{Sampler}(d_{i+1})
            if t_{i+1} == EOS then
                                                                                                   ▶ End of sequence
                   break
10
            p_{\text{new}} \leftarrow \text{PMPDScheduler}(i+1, K_{i+1}V_{i+1}, d_{i+1}) \triangleright \text{Precision-switching scheduler}
12
13 end
```


Algorithm 1: Progressive Mixed-Precision Decoding

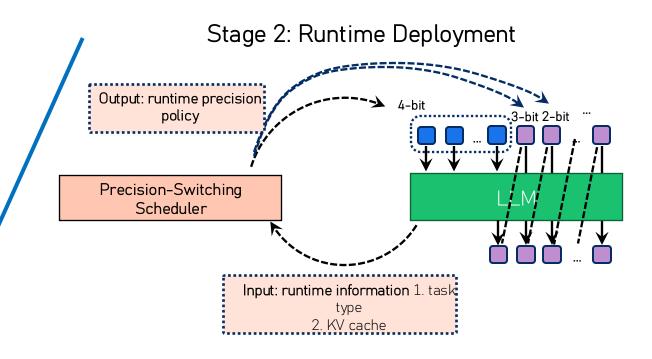
```
Input: Full-precision LLM m
              Precision set \mathcal{P}, e.g. \mathcal{P} = \{16, 8, 4, 2\}
              Calibration set \mathcal{D}_{\text{calib}}
              Reference quality q_{ref} in predefined metric
              Quality drop tolerance \epsilon
    Output: Output token sequence (t_0, t_1, ...)
    /* - - - Offline Calibration Stage - - - */
 1 m_p \leftarrow \text{Quantizer}(m, p) for p \in \mathcal{P}
                                                                 ▶ Obtain variably quantized model variants
2 p^{\text{prefill}}, p^{\text{decode}} \leftarrow \text{PAPAlloc}(m, \mathcal{P}, \mathcal{D}_{\text{calib}}, q_{\text{ref}}, \epsilon)
                                                                                           ▶ Phase-aware precision
       allocation
    /* - - - Deployment Stage - - - */
3 d_0, K_0 V_0 \leftarrow m_{p\text{prefill}} \text{ (prompt)}
                                                                                                         ▶ Prefill Phase
4 t_0 \leftarrow \text{Sampler}(d_0)
5 p_{\text{new}} \leftarrow p^{\text{decode}}
6 for i ← 0 to max context len −1 do
                                                                                                    ▶ Decoding Phase
            d_{i+1}, K_{i+1}V_{i+1} \leftarrow m_{p^{\text{new}}}(t_i, K_iV_i)
            t_{i+1} \leftarrow \text{Sampler}(d_{i+1})
            if t_{i+1} == EOS then
                                                                                                    ▶ End of sequence
                    break
            p_{\text{new}} \leftarrow \text{PMPDScheduler}(i+1, K_{i+1}V_{i+1}, d_{i+1}) \triangleright \text{Precision-switching scheduler}
13 end
```


Stage 1: Offline Calibration


Algorithm 1: Progressive Mixed-Precision Decoding

Stage 1: Offline Calibration

Precision-Switching Scheduler

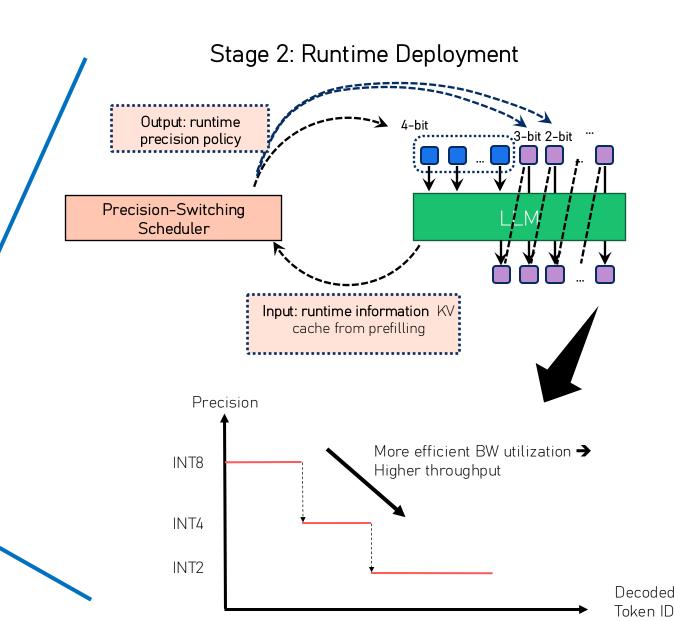


Algorithm 1: Progressive Mixed-Precision Decoding

```
Input: Full-precision LLM m
Precision set \mathcal{P}, e.g. \mathcal{P} = \{16, 8, 4, 2\}
Calibration set \mathcal{D}_{\text{calib}}
Reference quality q_{\text{ref}} in predefined metric
Quality drop tolerance \epsilon
Output: Output token sequence (t_0, t_1, ...)

/* --- Offline Calibration Stage --- */

1 m_p \leftarrow \text{Quantizer}(m, p) for p \in \mathcal{P} \triangleright Obtain variably quantized model variants
2 p^{\text{Prefill}}, p^{\text{decode}} \leftarrow \text{PAPAlloc}(m, \mathcal{P}, \mathcal{D}_{\text{calib}}, q_{\text{ref}}, \epsilon) \triangleright Phase-aware precision allocation
```



Algorithm 1: Progressive Mixed-Precision Decoding

```
Input: Full-precision LLM m
Precision set \mathcal{P}, e.g. \mathcal{P} = \{16, 8, 4, 2\}
Calibration set \mathcal{D}_{\text{calib}}
Reference quality q_{\text{ref}} in predefined metric
Quality drop tolerance \epsilon
Output: Output token sequence (t_0, t_1, ...)

/* --- Offline Calibration Stage --- */

1 m_p \leftarrow \text{Quantizer}(m, p) for p \in \mathcal{P} \triangleright Obtain variably quantized model variants
2 p^{\text{prefill}}, p^{\text{decode}} \leftarrow \text{PAPAlloc}(m, \mathcal{P}, \mathcal{D}_{\text{calib}}, q_{\text{ref}}, \epsilon) \triangleright Phase-aware precision allocation
```


Experiments

- · Three Different Datasets
- > CNN / DailyMail
- > Dialogsum
- > IWSLT
- Models (ranging from 1B to 7B)
- ➤ Vicuna-7B
- ➤ Zephyr-3B
- ➤ Phi-1.5
- > MobileLlaMA.
- Evaluation Metrics
- > Rouge-L
- ➤ BERTScore
- > BLEU
- > SacreBLEU
- Baselines
- ➤ Baseline-L (single low precision)
- ➤ Baseline-H (single high precision)
- > Dense-and-Sparse decomposition (DNS), SOTA low-precision quantization

- · PMPD-Static: Static Scheduler
- Comparison with baseline-h: negligible performance loss with up to 33% reduction in bitwidth

	CNN/DM		D	ialogsum	IWSLT		
Method	Model (↓): Vicuna-7B		Model (↓)): Vicuna-7B		Model (↓)): Vicuna-7B		
	MobileLlaMA , Phi-1.5		MobileLlaMA, Phi-1.5		MobileLlaMA, Zephyr-3B		
	Bit	Rouge-L/ BERTScore	Bit	Rouge-L/ BERTScore	Bit	BLEU/ SacreBLEU	
Baseline-l	2	8.30 / 78.4	2	10.2 / 75.5	2	1.2 / 1.2	
Baseline-h	3	24.2 / 86.9	3	24.4 / 88.2	3	31.6 / 31.6	
DNS	2.39	24.2 / 86.8	2.0	-	2.68	27.6 / 27.6	
PMPD-Static	2.39	24.3 / 87.0	2.0	25.0 / 88.2	2.68	31.0 / 31.1	
PMPD-Learned	2.43	24.0 / 86.7	2.74	24.5 / 88.2	2.37	29.9 / 29.9	
Baseline-1	3	16.3 / 83.3	3	15.8 / 84.1	3	9.8 / 9.83	
Baseline-h	4	17.2 / 83.5	4	16.8 / 84.9	4	12.7 / 12.7	
DNS	3.37	17.4 / 83.5	3.21	14.7 / 84.4	3.65	12.0 / 12.0	
PMPD-Static	3.37	17.6 / 83.7	3.0	17.0 / 85.0	3.65	12.6 / 12.6	
PMPD-Learned	3.19	16.6 / 83.2	3.21	<u>17.1</u> / <u>85.0</u>	3.48	11.8 / 11.8	
Baseline-l	3	13.4 / 82.4	3	15.3 / 85.1	3	21.1 / 21.1	
Baseline-h	4	16.2 / 84.0	4	18.0 / 86.1	4	30.4 / 30.4	
DNS	3.71	12.4 / 81.8	3.30	16.1 / 85.7	3.34	28.2 / 28.2	
PMPD-Static	3.71	16.2 / 84.0	3.30	18.1 / 86.2	3.0	29.7 / 29.7	
PMPD-Learned	3.09	15.5 / 83.4	3.52	$\overline{17.9}$ / $\overline{86.1}$	3.34	<u>29.8</u> / <u>29.8</u>	

- · PMPD-Static: Static Scheduler
- Comparison with baseline-h: negligible performance loss with up to 33% reduction in bitwidth
- Comparison with SOTA: under the same bitwidth budget, **outperform** DNS methods in all the cases

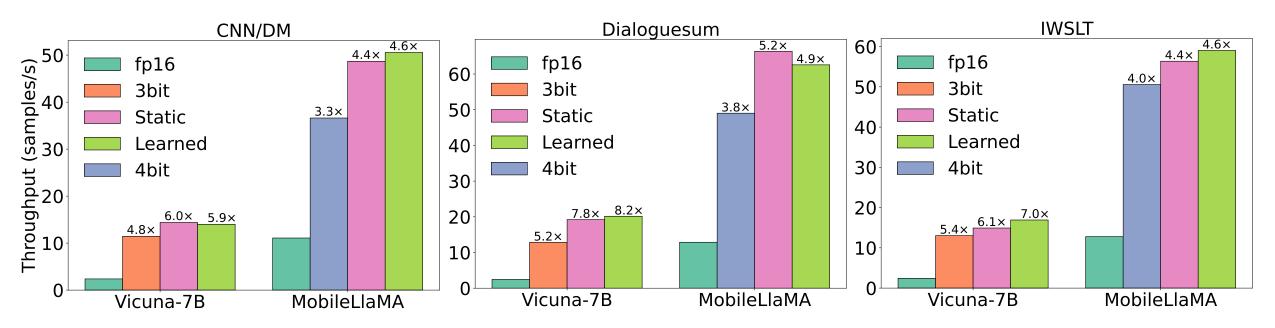
	CNN/DM		$\overline{\mathbf{D}}$	ialogsum	IWSLT		
Method	Model (↓): Vicuna-7B		Model (↓)): Vicuna-7B		Model (↓)): Vicuna-7B		
	Mob	ileLlaMA , Phi-1.5	Mob	pileLlaMA, Phi-1.5	MobileLlaMA, Zephyr-3B		
	Bit	Rouge-L/ BERTScore	Bit	Rouge-L/ BERTScore	Bit	BLEU/ SacreBLEU	
Baseline-l	2	8.30 / 78.4	2	10.2 / 75.5	2	1.2 / 1.2	
Baseline-h	3	24.2 / 86.9	3	24.4 / 88.2	3	31.6 / 31.6	
DNS	2.39	24.2 / 86.8	2.0	_	2.68	27.6 / 27.6	
PMPD-Static	2.39	24.3 / 87.0	2.0	25.0 / 88.2	2.68	31.0 / 31.1	
PMPD-Learned	2.43	24.0 / 86.7	2.74	24.5 / 88.2	2.37	29.9 / 29.9	
Baseline-l	3	16.3 / 83.3	3	15.8 / 84.1	3	9.8 / 9.83	
Baseline-h	4	17.2 / 83.5	4	16.8 / 84.9	4	12.7 / 12.7	
DNS	3.37	17.4 / 83.5	3.21	14.7 / 84.4	3.65	12.0 / 12.0	
PMPD-Static	3.37	17.6 / 83.7	3.0	17.0 / 85.0	3.65	12.6 / 12.6	
PMPD-Learned	3.19	16.6 / 83.2	3.21	<u>17.1</u> / <u>85.0</u>	3.48	11.8 / 11.8	
Baseline-l	3	13.4 / 82.4	3	15.3 / 85.1	3	21.1 / 21.1	
Baseline-h	4	16.2 / 84.0	4	18.0 / 86.1	4	30.4 / 30.4	
DNS	3.71	12.4 / 81.8	3.30	16.1 / 85.7	3.34	28.2 / 28.2	
PMPD-Static	3.71	<u>16.2</u> / <u>84.0</u>	3.30	<u>18.1</u> / <u>86.2</u>	3.0	29.7 / 29.7	
PMPD-Learned	3.09	15.5 / 83.4	3.52	17.9 / 86.1	3.34	<u>29.8</u> / <u>29.8</u>	

- PMPD-Static: Static Scheduler
- Comparison with baseline-h: negligible performance loss with up to 33% reduction in bitwidth
- Comparison with SOTA: under the same bitwidth budget, **outperform** DNS methods in all the cases
- · PMPD-Learned: Learned Scheduler
- ➤ Better performance than baselines and SOTA approaches

	CNN/DM			ialogsum	IWSLT		
	Model (↓): Vicuna-7B		Model (↓)): Vicuna-7B		Model (↓)): Vicuna-7B		
Method	Mob	ileLlaMA , Phi-1.5	MobileLlaMA, Phi-1.5		MobileLlaMA, Zephyr-3B		
	Bit	Rouge-L/ BERTScore	Bit	Rouge-L/ BERTScore	Bit	BLEU/ SacreBLEU	
Baseline-l	2	8.30 / 78.4	2	10.2 / 75.5	2	1.2 / 1.2	
Baseline-h	3	24.2 / 86.9	3	24.4 / 88.2	3	31.6 / 31.6	
DNS	2.39	24.2 / 86.8	2.0	_	2.68	27.6 / 27.6	
PMPD-Static	2.39	24.3 / 87.0	2.0	25.0 / 88.2	2.68	31.0 / 31.1	
PMPD-Learned	2.43	24.0 / 86.7	2.74	24.5 / 88.2	2.37	29.9 / 29.9	
Baseline-l	3	16.3 / 83.3	3	15.8 / 84.1	3	9.8 / 9.83	
Baseline-h	4	17.2 / 83.5	4	16.8 / 84.9	4	12.7 / 12.7	
DNS	3.37	17.4 / 83.5	3.21	14.7 / 84.4	3.65	12.0 / 12.0	
PMPD-Static	3.37	17.6 / 83.7	3.0	17.0 / 85.0	3.65	12.6 / 12.6	
PMPD-Learned	3.19	16.6 / 83.2	3.21	17.1 / 85.0	3.48	11.8 / 11.8	
Baseline-l	3	13.4 / 82.4	3	15.3 / 85.1	3	21.1 / 21.1	
Baseline-h	4	16.2 / 84.0	4	18.0 / 86.1	4	30.4 / 30.4	
DNS	3.71	12.4 / 81.8	3.30	16.1 / 85.7	3.34	28.2 / 28.2	
PMPD-Static	3.71	<u>16.2</u> / <u>84.0</u>	3.30	<u>18.1</u> / <u>86.2</u>	3.0	29.7 / 29.7	
PMPD-Learned	3.09	15.5 / 83.4	3.52	17.9 / 86.1	3.34	29.8 / 29.8	

- PMPD-Static: Static Scheduler
- Comparison with baseline-h: negligible performance loss with up to 33% reduction in bitwidth
- Comparison with SOTA: under the same bitwidth budget, **outperform** DNS methods in all the cases
- PMPD-Learned: Learned Scheduler
- ➤ Better performance than baselines and SOTA approaches
- ➤ Slightly worse than PMPD-Static, but has higher generality since PMPD-Learned does not require validation datasets for calibration

	CNN/DM		D	ialogsum	IWSLT		
	Model (↓): Vicuna-7B		Model (↓)): Vicuna-7B		Model (↓)): Vicuna-7B		
Method	Mob	ileLlaMA, Phi-1.5	Mob	ileLlaMA, Phi-1.5	MobileLlaMA, Zephyr-3B		
	Bit	Rouge-L/ BERTScore	Bit	Rouge-L/ BERTScore	Bit	BLEU/ SacreBLEU	
Baseline-l	2	8.30 / 78.4	2	10.2 / 75.5	2	1.2 / 1.2	
Baseline-h	3	24.2 / 86.9	3	24.4 / 88.2	3	31.6 / 31.6	
DNS	2.39	24.2 / 86.8	2.0	-	2.68	27.6 / 27.6	
PMPD-Static	2.39	24.3 / 87.0	2.0	25.0 / 88.2	2.68	31.0 / 31.1	
PMPD-Learned	2.43	24.0 / 86.7	2.74	24.5 / 88.2	2.37	29.9 / 29.9	
Baseline-l	3	16.3 / 83.3	3	15.8 / 84.1	3	9.8 / 9.83	
Baseline-h	4	17.2 / 83.5	4	16.8 / 84.9	4	12.7 / 12.7	
DNS	3.37	17.4 / 83.5	3.21	14.7 / 84.4	3.65	12.0 / 12.0	
PMPD-Static	3.37	17.6 / 83.7	3.0	17.0 / 85.0	3.65	12.6 / 12.6	
PMPD-Learned	3.19	16.6 / 83.2	3.21	17.1 / 85.0	3.48	11.8 / 11.8	
Baseline-l	3	13.4 / 82.4	3	15.3 / 85.1	3	21.1 / 21.1	
Baseline-h	4	16.2 / 84.0	4	18.0 / 86.1	4	30.4 / 30.4	
DNS	3.71	12.4 / 81.8	3.30	16.1 / 85.7	3.34	28.2 / 28.2	
PMPD-Static	3.71	16.2 / 84.0	3.30	18.1 / 86.2	3.0	29.7 / 29.7	
PMPD-Learned	3.09	15.5 / 83.4	3.52	17.9 / 86.1	3.34	29.8 / 29.8	

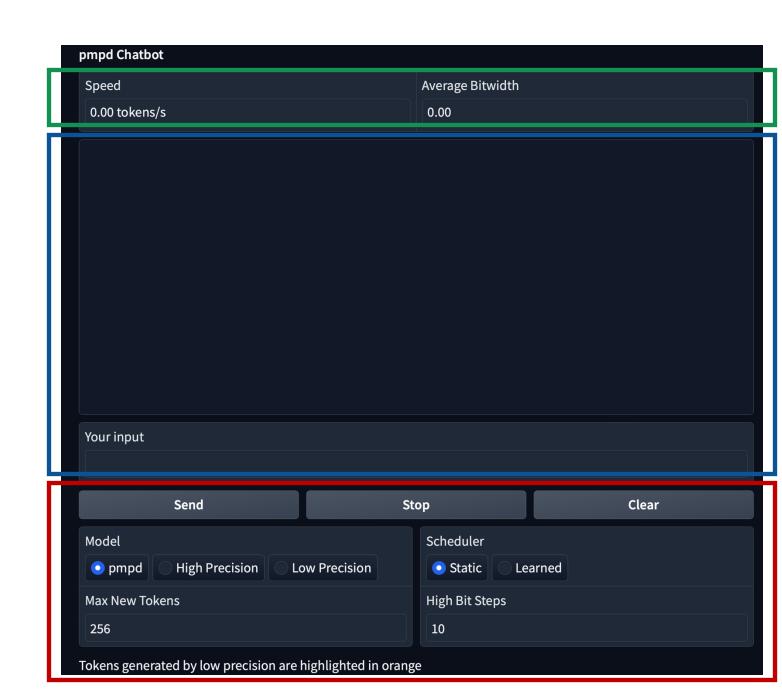

Hardware Performance

- GPU Speedup Comparison
- > Evaluation platforms: Nvidia RTX 4090 & A40
- ➤ Baseline-h versus. PMPD
- > Operations: Attn Proj. (attention projection) and MLP Proj. (MLP projection)
- > PMPD shows consistent speedup over Baseline-h on both GPU platforms

		Vicuna-7B		MobileLlama		Phi-1.5		Zephyr-3B	
		Attn Proj.	MLP Proj.	Attn Proj.	MLP Proj.	Attn Proj.	MLP Proj.	Attn Proj.	MLP Proj.
RTX 4090	Baseline-h	6.25×	11.32×	1.25×	2.50×	1.32×	1.70×	3.33×	2.54×
	PMPD	6.25×	12.20×	1.40×	2.81×	1.51×	1.84×	2.73×	$2.82 \times$
A40	Baseline-h	5.81×	3.77×	3.00×	3.96×	2.57×	2.83×	3.50×	3.02×
	PMPD	6.58×	4.60×	3.37×	4.74×	2.77×	3.51×	3.81×	4.27×

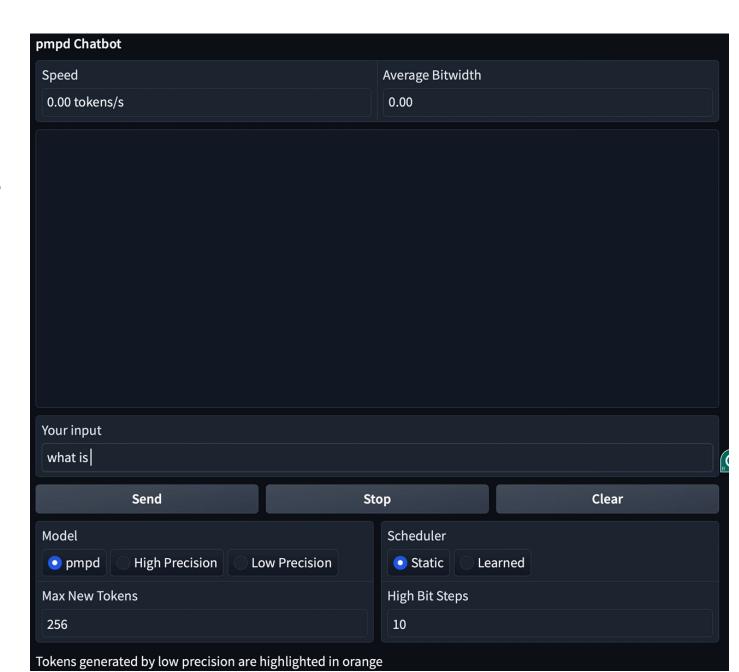
Hardware Performance

- Dataflow: Simulate PMPD support (weight transfer for centroids)
- Speedup of PMPD on Dataflow
- > PMPD introduce 4 ~ 8x speedup on Dataflow architecture
- > Higher speedup in 7B models: more memory-bound
- Static Scheduler vs Learned Scheduler
- > Similar speedup across different models & datasets



Demo

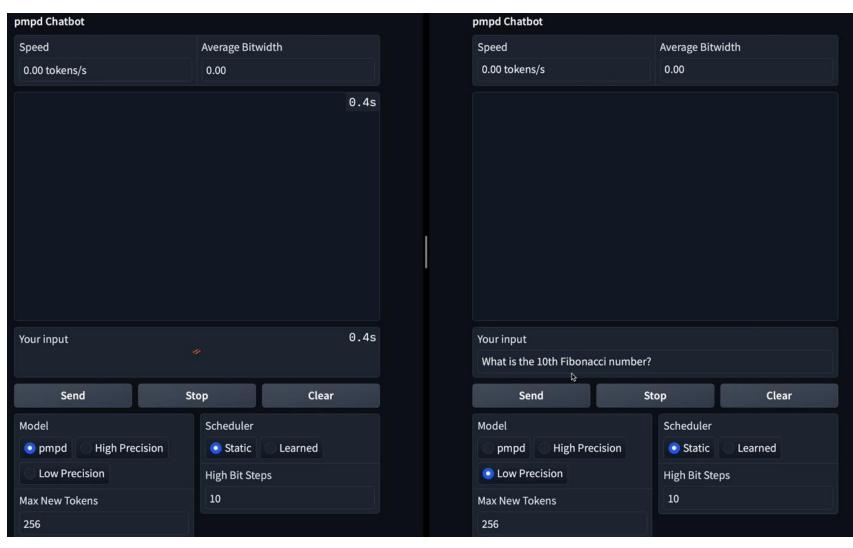
- Demo GUI
- Speed Measurement
 - Decoding Speed
 - Average Bitwidth


- Chatbot with custom input prompts
 - Input box for any prompts
 - Output box for generated results

- Configuration Panel
 - Model Spec (PMPD/Low/High)
 - Config of Max New Tokens
 - Scheduler Choice (Static/Learned)

Demo

- Demo1: Inference with lower average bitwidth
- High precision at the beginning
- Low precision (orange) in the later stage of the decoding



Demo

- Demo2: Generation Quality
- PMPD: generates the correct result
- Baseline-L: predicts the wrong answer

PMPD: Correct results (55)

Baseline-L: Wrong results (10)

Thank you!