













### **Bootstrapping Language-Guided Navigation Learning with Self-Refining Data Flywheel**



\*Previously interned at Shanghai AI Laboratory

<sup>1</sup>Shanghai AI Laboratory <sup>2</sup>UNC, Chapel Hill <sup>3</sup>Adobe Research <sup>4</sup>Nanjing University <sup>5</sup>Shanghai Innovation Institute





- Vision-and-Language Navigation
  - Visual navigation following natural language instructions in unseen environments
  - Data scarcity problem: 14k instruction-trajectory pairs within 61 environments for training on R2R

**Instruction:** Exit the bathroom and turn left. Walk past kitchen and stop by the dining table.



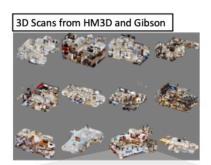


Demonstration of the Room-to-Room Vision-and-Language Navigation (R2R-VLN) Task.

# 1. Background

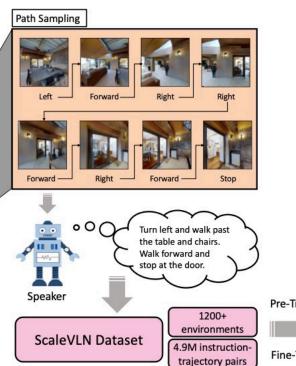


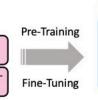
- Data Augmentation for VLN
  - ScaleVLN: Sampling path from unlabeled environments, then generate instructions with a trained path-to-instruction generator













the door.





- Data Augmentation for VLN
  - ScaleVLN: Sampling path from unlabeled environments, then generate instructions with a trained path-to-instruction generator
  - However, Data quality is Low

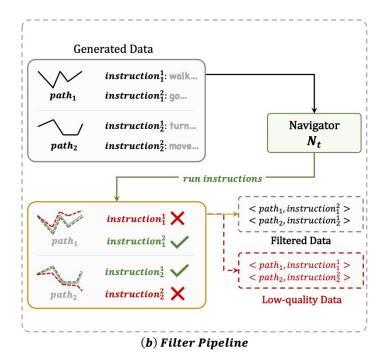
Table 1: Performance (on R2R validation unseen split) on different datasets solely. Directly training with R2R yields the best SPL compared to training with other augmentation datasets.

| Training Data | #data | #Env. | SR↑         | SPL↑ |
|---------------|-------|-------|-------------|------|
| R2R           | 14K   | 61    | 65.9        | 55.9 |
| Prevalent     | 1.0M  | 60    | <b>67.1</b> | 54.8 |
| ScaleVLN      | 4.9M  | 800   | 63.9        | 50.1 |

# 2. Self-Refining Data Flywheel

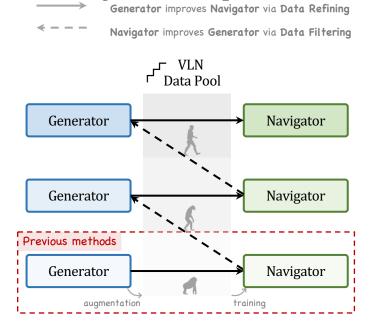


- How can we evaluate and improve language-guided navigational data?
- Evaluation: Self-evaluation
  - Using the trained navigator to re-run the instruction, It should follow the original path
  - Complex instruction-trajectory similarity
  - -> Simple trajectory-trajectory similarity



### • Improvement:

 With the evaluation method, we can filter a high-quality subset, which can be used to improve the generator, while the improved generator can in turn improve the navigator, establishing a data loop



### 2. Self-Refining Data Flywheel

- Generate Data Pool via Base Instruction Generator
- Train Base Navigator with Generated Data
- Filter High-Quality Data using Trained Navigator
- Train Better Instruction Generator with Filtered Data
- Refine the Data Pool with Better Instruction Generator
- Train Better Navigator with the Refined Data Pool

#### Algorithm 1 Pipeline of Self-Refining Data Flywheel (SRDF)

**Require:** Seed data  $D_{Seed}$  (Human-annotated), Unlabelled trajectories  $D_{Traj}$ , Total iterations T.

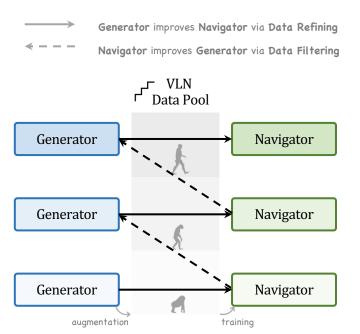
- 1: Train base instruction generator  $G_1$  with  $D_{Seed}$ .
- 2: Use  $G_1$  to generate nav-training data  $D_1^N$  and gen-training data  $D_2^G$  for  $D_{Traj}$ .
- 3:  $/*D_1^N$  is generated via random sampling while  $D_1^G$  via greedy decoding
- 4: Train base navigator  $N_1$  with  $D_1^N$ .
- 5: Use  $N_1$  to filter high-quality subsets  $FD_2^G$  from  $D_2^G$  and  $FD_{<2}^N$  from  $D_1^N$ .
- 6: for each iteration t ( $1 < t \le T$ ) do
- 7: /\* Note: Seed data  $D_{Seed}$  is used in training stages of both  $G_t$  and  $N_t$  but omitted for simplicity
- 8: Train generator  $G_t$  with  $FD_t^G$ .
- 9: Use  $G_t$  to generate nav-training data  $ND_t^N$  for  $LD_t^N$  and gen-training data  $D_{t+1}^G$  for  $D_{Traj}$ .
- 10: /\*  $ND_t^N$  is generated via random sampling while  $D_{t+1}^G$  via greedy decoding
- 11: Combine  $ND_t^N$  and  $FD_{\leq t}^N$  to form  $D_t^N$ .
- 12: Train navigator  $N_t$  with  $D_t^N$ .
- 13: Use  $N_t$  to filter high-quality subsets  $FD_{t+1}^G$  from  $D_{t+1}^G$  and  $FND_t^N$  from  $ND_t^N$ .
- 14: Combine  $FND_t^N$  and  $FD_{\le t}^N$  to form  $FD_{\le t+1}^N$ .
- **15: end for**















### • Statistics of Generated Dataset (3-round flywheel running)

| Dataset                       | Instruction | #Env. | #Instr.    | #Vocab. | Instr. Length |
|-------------------------------|-------------|-------|------------|---------|---------------|
| R2R (Anderson et al., 2018b)  |             | 61    | 14,039     | 3,063   | 26.33         |
| RxR-en (Ku et al., 2020)      |             | 60    | 26,464     | 7,249   | 102.13        |
| REVERIE (Qi et al., 2020)     | Manually    | 60    | 10,466     | 1,140   | 18.64         |
| CVDN (Thomason et al., 2020)  | Labelled    | 57    | 4,742      | 2,068   | 53.21         |
| SOON (Zhu et al., 2021)       |             | 34    | 2,780      | 735     | 44.09         |
| R4R (Zhu et al., 2020)        |             | 59    | 233,532    | 3,004   | 52.25         |
| Prevalent (Hao et al., 2020)  |             | 60    | 1,069,620  | 993     | 24.23         |
| Marky (Wang et al., 2022b)    |             | 60    | 333,777    | 2,231   | 99.45         |
| AutoVLN (Chen et al., 2022c)  | Generated   | 900   | 217,703    | 1,696   | 20.52         |
| ScaleVLN (Wang et al., 2023e) |             | 1289  | 4,941,710  | 172     | 21.61         |
| SRDF-20M (Ours)               |             | 860   | 20,417,874 | 10,363  | 24.05         |

#### Downstream Datasets

- Fine-grained VLN (R2R)
- High-level VLN (REVERIE, SOON)
- Long-horizon VLN (R4R, RxR-english)
- Dialog-based VLN (CVDN)
- VLN in continuous environment (R2R-CE)
- VLN instruction generation (R2R)



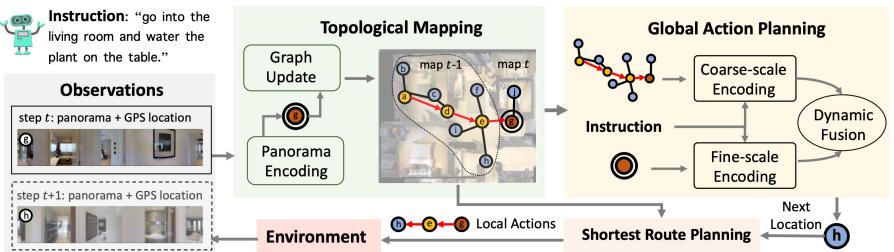


- Implementation
  - The path to instruction generator is finetuned using an interleaved MLLM, Mantis, with LoRA

```
This is a navigation trajectory consists of several image sequences:
(Viewpoint 1: Image: <image>, Action: right (175.49 degree) and up (1.03 degree)),
(Viewpoint 1: Image: <image>, Action: forward),
(Viewpoint 2: Image: <image>, Action: forward),
(Viewpoint 3: Image: <image>, Action: left (16.44 degree) and down (0.12 degree)),
(Viewpoint 3: Image: <image>, Action: forward),
(Viewpoint 4: Image: <image>, Action: left (52.83 degree) and down (0.14 degree)),
(Viewpoint 4: Image: <image>, Action: forward),
(Viewpoint 5: Image: <image>, Action: forward),
(Viewpoint 6: Image: <image>, Action: right (83.02 degree) and down (0.53 degree)),
(Viewpoint 7: Image: <image>, Action: stop).
```

Could you give me its corresponding navigation instruction in details?

Navigator based on DUET







- Multi-Round Flywheel Running
  - Generator improves Navigator via Data Refining
  - Navigator improves Generator via Data Filtering

Table 3: Navigator and instruction generator results in different rounds.

| Method         | Instruction Following |      |      |             |                    | Instruction Generation |         |         |             |          |        |  |
|----------------|-----------------------|------|------|-------------|--------------------|------------------------|---------|---------|-------------|----------|--------|--|
| Metriod        | NE↓                   | OSR↑ | SR↑  | SPL↑        | SPICE <sup>↑</sup> | SPICE-D↑               | Bleu-1↑ | Bleu-4↑ | CIDEr↑      | Meteor ↑ | Rouge↑ |  |
| Baseline       | 2.37                  | 85.5 | 78.6 | 69.9        | 21.8               | 28.0                   | 72.5    | 27.7    | 42.2        | 23.6     | 49.0   |  |
| Ours (round 1) | 1.95                  | 87.1 | 82.4 | 75.9        | 23.7               | 28.4                   | 71.4    | 29.5    | 46.5        | 23.1     | 50.2   |  |
| Ours (round 2) | 1.81                  | 88.5 | 83.6 | 77.3        | 25.2               | 29.9                   | 73.7    | 31.0    | <b>50.7</b> | 24.2     | 51.3   |  |
| Ours (round 3) | 1.76                  | 89.6 | 84.4 | <b>77.6</b> | 25.7               | 30.4                   | 74.5    | 30.8    | 49.7        | 24.5     | 51.3   |  |



# 有京大党 NANJING UNIVERSIT

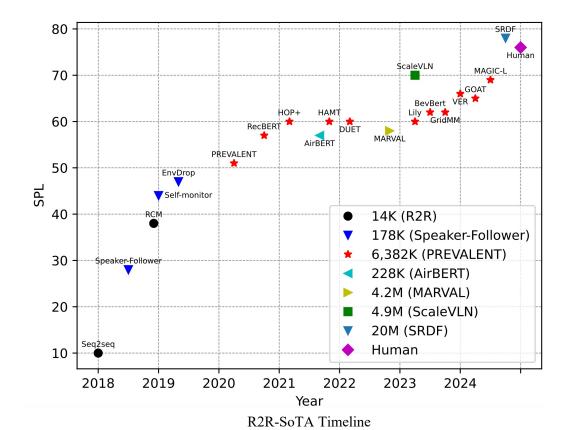




### Downstream Navigation Tasks (R2R + R2R-CE)

Table 7: Comparison of single-run performance on R2R and R2R-CE datasets. Best results are marked in **bold blue** and second best in **bold**.

|                                         |      |          | Roor  | n-to-Ro   | oom D | ataset |       |           | Room-to-Room-CE Dataset |     |      |      |        |      |
|-----------------------------------------|------|----------|-------|-----------|-------|--------|-------|-----------|-------------------------|-----|------|------|--------|------|
| Methods                                 | Va   | alidatio | n-Uns | een       |       | Test-U | nseen |           | Validation-Unseen       |     |      | Te   | st-Uns | seen |
|                                         | NE↓  | OSR↑     | SR↑   | SPL↑      | NE↓   | OSR↑   | SR↑   | SPL↑      | NE↓                     | SR↑ | SPL↑ | NE↓  | SR↑    | SPL↑ |
| Human                                   | -    | -        | -     | -         | 1.61  | 90     | 86    | 76        | -                       | -   | -    | -    | -      | -    |
| Seq2Seq (Anderson et al., 2018b)        | 7.81 | 28       | 21    | -         | 7.85  | 27     | 20    | -         | -                       | -   | -    | -    | -      | -    |
| Speaker Follower (Fried et al., 2018)   | 6.62 | 45       | 36    | -         | 6.62  | -      | 35    | 28        | -                       | -   | -    | -    | -      | -    |
| RCM (Wang et al., 2019)                 | 6.09 | 50       | 43    | -         | 6.12  | 50     | 43    | 38        | -                       | -   | -    | -    | -      | -    |
| EnvDrop (Tan et al., 2019)              | 5.22 | -        | 52    | 48        | 5.23  | 59     | 51    | 47        | -                       | -   | -    | -    | -      | -    |
| PREVALENT (Hao et al., 2020)            | 4.71 | -        | 58    | 53        | 5.30  | 61     | 54    | 51        | -                       | -   | -    | -    | -      | -    |
| NvEM (An et al., 2021)                  | 4.27 | -        | 60    | 55        | 4.37  | -      | 58    | 54        | -                       | -   | -    | -    | -      | -    |
| AirBert (Guhur et al., 2021)            | 4.10 | -        | 62    | 56        | 4.13  | -      | 62    | 57        | -                       | -   | -    | -    | -      | -    |
| VLN CBERT (Hong et al., 2021)           | 3.93 | -        | 63    | 57        | 4.09  | 70     | 63    | 57        | -                       | -   | -    | -    | -      | -    |
| HAMT (Chen et al., 2021)                | 2.29 | -        | 66    | 61        | 3.93  | 72     | 65    | 60        | -                       | -   | -    | -    | -      | -    |
| HOP (Qiao et al., 2022)                 | 3.80 | 1-       | 64    | 57        | 3.83  | -      | 64    | 59        | -                       | -   | -    | -    | -      | -    |
| HOP+ (Qiao et al., 2023a)               | 3.49 | -        | 67    | 61        | 3.71  | -      | 66    | 60        | -                       |     | -    | -    | -      | -    |
| DUET (Chen et al., 2022b)               | 3.31 | 81       | 72    | 60        | 3.65  | 76     | 69    | 59        | -                       | -   | -    | -    | -      | 7-   |
| Lily (Lin et al., 2023)                 | 2.90 | -        | 74    | 62        | 3.44  | -      | 72    | 60        | -                       | -   | -    | -    | -      | -    |
| DreamWalker (Wang et al., 2023a)        | -    | -        | -     | -         | -     | -      | -     | -         | 5.53                    | 49  | 44   | 5.48 | 49     | 44   |
| BEVBert (An et al., 2023a)              | 2.81 | 84       | 75    | 64        | 3.13  | 81     | 73    | 62        | 4.57                    | 59  | 50   | 4.70 | 59     | 50   |
| ScaleVLN (Wang et al., 2023e)           | 2.09 | 88       | 81    | <b>70</b> | 2.27  | 86     | 80    | 70        | 4.80                    | 55  | 51   | 5.11 | 55     | 50   |
| GridMM (Wang et al., 2023d)             | 2.83 | -        | 75    | 64        | 3.13  | -      | 73    | 62        | 5.11                    | 49  | 41   | 5.64 | 46     | 39   |
| ETPNav (An et al., 2023b)               | -    | -        | -     | -         | 1-    | -      | -     | -         | 4.71                    | 57  | 49   | 5.12 | 55     | 48   |
| DualAction (Zhang & Kordjamshidi, 2024) | -    | -        | -     | -         | -     | -      | -     | -         | -                       | 58  | 49   | -    | 56     | 48   |
| HNR (Wang et al., 2024e)                | -    | -        | -     | -         | -     | -      | -     | -         | 4.42                    | 61  | 51   | 4.81 | 58     | 50   |
| NaviLLM (Zheng et al., 2024)            | 3.51 | 1-       | 67    | 59        | 3.71  | -      | 68    | 60        | -                       | -   | -    | -    | -      | -    |
| NavGPT-2 (Zhou et al., 2024a)           | 2.84 | 84       | 74    | 61        | 3.33  | 80     | 72    | 60        | -                       | -   | - 1  | -    | -      | -    |
| VER (Liu et al., 2024)                  | 2.80 | -        | 76    | 65        | 2.74  | -      | 76    | 66        | -                       | -   | -    | -    | -      | 7-   |
| MAGIC-L (Wang et al., 2024b)            | 2.22 | 86       | 79    | 70        | 2.75  | 82     | 77    | 69        | -                       | -   | -    | -    | -      | -    |
| GOAT (Wang et al., 2024a)               | 2.40 | 85       | 78    | 68        | 3.04  | 80     | 75    | 65        | -                       | -   | -    | -    | -      | -    |
| SRDF (Ours)                             | 1.62 | 90       | 86    | <b>79</b> | 1.82  | 89     | 85    | <b>78</b> | 4.12                    | 65  | 57   | 4.35 | 64     | 56   |















# 3. Experiments

### • Downstream Navigation Tasks (Others)

Table 8: Comparison with previous methods on various downstream tasks. † indicates the RxR-en results are reproduced using their officially released checkpoints. \* means pre-exploration methods. Best results are marked in **bold blue** and second best in **bold**.

|                                     | RxR        | -english | ]    | R4R        | CV   | DN   |            | REV            | ERIE |        |       | SO               | ON     |        |
|-------------------------------------|------------|----------|------|------------|------|------|------------|----------------|------|--------|-------|------------------|--------|--------|
| Methods                             | Val unseen |          | Val  | Val unseen |      | Test | Val unseen |                | Test | unseen | Val u | nseen            | Test u | ınseen |
|                                     | SR↑        | nDTW↑    | SR↑  | sDTW↑      | GP↑  | GP↑  | SR↑        | SPL↑           | SR↑  | SPL↑   | SR↑   | SPL↑             | SR↑    | SPL↑   |
| HAMT† (Chen et al., 2021)           | 56.4       | 63.0     | 44.6 | 31.8       | 5.13 | 5.58 | 33.0       | 30.2           | 30.4 | 26.7   | -     | 0-               | -      | -      |
| MARVAL (Kamath et al., 2022)        | 64.7       | 70.4     | _    |            | -    | -    | -          | -              | -    | -      | -     | -                | -      | _      |
| DUET (Chen et al., 2022b)           | _          | _        | =    | _          | -    | -    | 47.0       | 33.7           | 52.5 | 36.1   | 36.3  | 22.6             | 33.4   | 21.4   |
| AutoVLN (Chen et al., 2022c)        | -          | -        | _    | -          | -    | -    | 55.9       | 40.9           | 55.2 | 38.9   | 41.0  | 30.7             | 40.4   | 27.9   |
| RREx-Bot* (Sigurdsson et al., 2023) | -          | -        | -    | -1         | -    | -    | 61.0       | 58.8           | 65.9 | 62.0   | 49.2  | 48.6             | 47.5   | 47.1   |
| BEVBert† (An et al., 2023a)†        | 66.7       | 69.6     | _    | 120        | _    | -    | 51.8       | 36.4           | 52.8 | 36.4   | -     | 12               | -      |        |
| KERM (Li et al., 2023b)             | -          | -        | -    | -          | -    | -    | 50.4       | 35.4           | 52.4 | 39.2   | 38.1  | 23.2             | -      | -      |
| ScaleVLN (Wang et al., 2023e)       | -          | -        | _    | -          | 6.12 | 6.97 | 57.0       | 41.9           | 56.1 | 39.5   | -     |                  | -      | -      |
| PanoGen (Li & Bansal, 2023)         | _          | -        | 47.8 |            | 5.93 | 7.17 | _          | -              | -    | -      | -     | _                | -      | -      |
| BSG (Liu et al., 2023)              | -          | -        | 47.0 | 34.0       | -    | -    | 52.1       | 35.6           | 56.5 | 38.7   | -     | -                | -      | -      |
| MiC (Qiao et al., 2023b)            | -          | -        | -    | -          |      | -    | 57.0       | 43.6           | 55.7 | 42.0   | -     |                  | 1-     | -      |
| NaviLLM (Zheng et al., 2024)        | -          | -        | -    | -0         | 6.16 | 7.90 | 44.6       | 36.6           | 43.5 | 34.5   | 38.3  | 29.2             | 35.0   | 26.2   |
| VER (Liu et al., 2024)              | -          | -        | 47.0 | 33.0       | -    | _    | 56.0       | 39.7           | 56.8 | 38.8   | -     | -                | -      | -      |
| PRET† (Lu et al., 2024)             | 71.0       | 70.9     | -    | -          | -    | -    | -          | , <del>-</del> | -    | =      | -     | ( <del>) -</del> | -      |        |
| MAGIC-L (Wang et al., 2024b)        | 72.9       | 68.1     | -    | -          | -    | -    | -          | -              | -    | -      | -     | -                | -      | -      |
| VLN-Copilot (Qiao et al., 2024)     | -          | -        | _    | -          | -    | _    | 57.4       | 43.6           | 57.8 | 42.3   | -     | -                | -      | -      |
| GOAT (Wang et al., 2024a)           | 68.2       | 66.8     | -    | -          | -    | -    | 53.4       | 36.7           | 57.7 | 40.5   | 40.4  | 28.1             | 40.5   | 25.2   |
| SRDF (Ours)                         | 78.8       | 74.4     | 64.4 | 44.6       | 7.67 | 8.19 | 60.4       | 45.4           | 61.4 | 47.7   | 50.3  | 41.7             | 46.6   | 37.9   |



## 3. Experiments

#### • R2R Instruction Generation

Table 9: Performance of different instruction generators on R2R. † means reproduced results. Best results are marked in **bold** blue, second best in **bold**, and third best in <u>underlined</u>.

| Methods                                      | R2R Validation Unseen |             |             |             |             |             |        |  |  |
|----------------------------------------------|-----------------------|-------------|-------------|-------------|-------------|-------------|--------|--|--|
|                                              | SPICE↑                | SPICE-D↑    | Bleu-1↑     | Bleu-4↑     | CIDEr↑      | Meteor↑     | Rouge↑ |  |  |
| BT-speaker (Fried et al., 2018)              | 18.9                  | 25.1        | 68.2        | 26.3        | 37.9        | 21.7        | 48.0   |  |  |
| LandmarkSelect (Agarwal et al., 2019)        | 19.7                  | -           | 54.8        | 15.9        | 13.2        | 23.1        | 35.7   |  |  |
| EnvDrop (Tan et al., 2019)                   | 21.8                  | 28.0        | 72.3        | 27.1        | 41.7        | 23.6        | 49.0   |  |  |
| CCC (Wang et al., 2022a)                     | 21.4                  | 27.8        | 70.8        | 27.2        | 46.1        | 23.1        | 47.7   |  |  |
| FOAM† (Dou & Peng, 2022)                     | 21.7                  | 28.1        | 72.5        | 27.3        | 42.4        | 23.4        | 49.2   |  |  |
| KEFA (Zeng et al., 2023)                     | 23.4                  | 29.3        | <u>73.8</u> | 28.3        | 42.7        | <u>24.4</u> | 50.3   |  |  |
| LANA (Wang et al., 2023b)                    | 22.6                  | -           | 73.6        | 28.9        | 45.7        | 23.7        | 49.8   |  |  |
| LANA+ (Wang et al., 2023c)                   | 22.8                  | -           | 73.2        | 29.5        | 46.0        | 24.1        | 49.6   |  |  |
| C-Instructor (Kong et al., 2024)             | 21.2                  | -           | 71.3        | 26.6        | 44.7        | 23.9        | 47.3   |  |  |
| BEVInsructor (Fan et al., 2024)              | 20.8                  | -           | 69.9        | 26.4        | 44.9        | 23.0        | 46.7   |  |  |
| SRDF (Ours, round 2)                         | 25.2                  | <u>29.9</u> | 73.7        | 31.0        | 50.7        | 24.2        | 51.3   |  |  |
| SRDF (Ours, round 3)                         | 25.7                  | 30.4        | <b>74.5</b> | <u>30.8</u> | 49.7        | 24.5        | 51.3   |  |  |
| SRDF (Ours, round 3 fine-tuned w/ $FD_4^G$ ) | 26.2                  | 30.9        | <b>75.3</b> | 31.1        | <u>49.2</u> | <b>25.0</b> | 51.4   |  |  |



### 3. Experiments

### Analysis

- Navigator and Generator Improves Each Other
- Scalability: Increasing training environments and instruction diversity improves performance

Table 3: Navigator and instruction generator results in different rounds in R2R val unseen split.

| Method         | Instruction Following |      |      |             |                    | Instruction Generation |         |         |        |         |        |  |
|----------------|-----------------------|------|------|-------------|--------------------|------------------------|---------|---------|--------|---------|--------|--|
| Mediod         | NE↓                   | OSR↑ | SR↑  | SPL↑        | SPICE <sup>↑</sup> | SPICE-D↑               | Bleu-1↑ | Bleu-4↑ | CIDEr↑ | Meteor↑ | Rouge↑ |  |
| Baseline       | 2.37                  | 85.5 | 78.6 | 69.9        | 21.8               | 28.0                   | 72.5    | 27.7    | 42.2   | 23.6    | 49.0   |  |
| Ours (round 1) | 1.95                  | 87.1 | 82.4 | 75.9        | 23.7               | 28.4                   | 71.4    | 29.5    | 46.5   | 23.1    | 50.2   |  |
| Ours (round 2) | 1.81                  | 88.5 | 83.6 | 77.3        | 25.2               | 29.9                   | 73.7    | 31.0    | 50.7   | 24.2    | 51.3   |  |
| Ours (round 3) | 1.76                  | 89.6 | 84.4 | <b>77.6</b> | 25.7               | 30.4                   | 74.5    | 30.8    | 49.7   | 24.5    | 51.3   |  |

Table 5: Results of instruction diversity (#instr. per path) in navigator training in val unseen split.

| Aug Data       | NE↓  | SR↑   | SPL↑  |
|----------------|------|-------|-------|
| Prev #Instr=1  | 3.21 | 71.86 | 61.04 |
| Ours #Instr=1  | 2.97 | 73.86 | 63.58 |
| Prev #Instr=3  | 3.12 | 72.67 | 62.53 |
| Ours #Instr=3  | 2.81 | 75.21 | 64.56 |
| Prev #Instr=6  | 3.07 | 72.84 | 63.12 |
| Ours #Instr=6  | 2.55 | 76.93 | 66.89 |
| Ours #Instr=12 | 2.59 | 77.05 | 66.53 |
|                |      |       |       |

Table 6: Results of different additional augmentation data in instruction generator training in val unseen split.

| Additional Data            | SPICE↑ | Bleu-4↑ | CIDEr↑ | Rouge↑ |
|----------------------------|--------|---------|--------|--------|
| -                          | 23.7   | 29.5    | 46.5   | 50.2   |
| ScaleVLN Data              | 23.5   | 29.0    | 46.1   | 49.8   |
| Prevalent Data             | 23.6   | 29.3    | 46.7   | 50.1   |
| 100-HM3D-Env Ours          | 23.9   | 29.8    | 47.8   | 50.0   |
| 200-HM3D-Env Ours          | 24.2   | 30.1    | 49.1   | 50.3   |
| 400-HM3D-Env Ours          | 24.6   | 30.3    | 48.9   | 50.7   |
| 800-HM3D-Env Ours          | 25.2   | 31.0    | 50.7   | 51.3   |
| 800-HM3D-Env Ours (Sample) | 24.8   | 30.3    | 48.3   | 51.0   |





#### Contributions

- building a novel VLN data-self-improving framework for the first time that iteratively improves the navigator and generator with their mutual feedback to create a substantially high-quality VLN dataset
- substantially strong/SoTA results over eight challenging VLN tasks, even surpassing/approaching humans in some cases

#### Future Work

- Iteratively introducing more environments to support more loop
- Applying Self-Refining Data Flywheel to more embodied tasks