

DS-LLM: Leveraging Dynamical Systems to Enhance Both

Training and Inference of Large Language Models

UCLA

Ruibing Song¹, Chuan Liu¹, Chunshu Wu¹, Ang Li², Dongfang Liu³, Yingnian Wu⁴, Tony (Tong) Geng¹

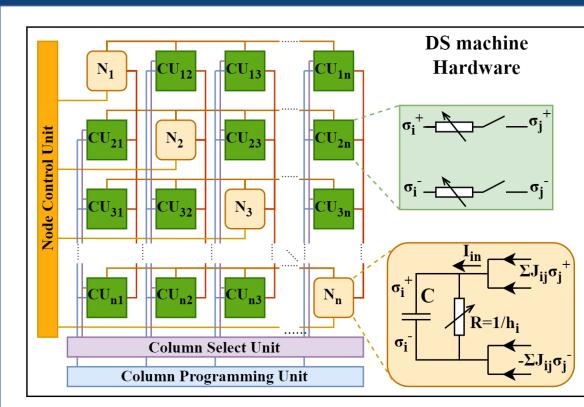
Motivation

- LLMs faces significant computational cost challenges:
 \$64 million for GPT-4 in 2020 -> \$191 million for Gemini Ultra in 2023
- Traditional techniques fail to address the fundamental bottleneck.
- Emerging techniques like Quantum computing, optical computing, and computing-in-memory are promising but facing significant technical barriers.
- Is it feasible to rely on mature CMOS-based technology to accelerate LLM training from 10 million hours to 10,000 hours while reducing energy consumption from 20 TJ to 200 MJ?
 - -> Yes! By training LLMs on DS-machines!

DS-LLM: Mapping LLMs to DS | Continuous Con

- Mapping LLMs to dynamical system (DS)-based machines to leverage its amazing computing power and energy efficiency.
- For inference, DS-LLM maps LLM components to optimization problems solvable via Hamiltonian configurations that can be solved by DS-machines.
- For training, DS-LLM utilizes continuous electric current flow in DS-machines for hardware-native gradient descent during training.

Background



Energy Landscape

 $\hat{F} = -\sum_{i=1}^{N} f(q_i, k_j) y_i v_j + \sum_{i=1}^{N} \frac{1}{2} \sum_{i=1}^{N} f(q_i, k_j) y_i^2$ $\mathcal{H} = -\sum_{i=1}^{N} J_{ij} \sigma_i \sigma_j + \sum_{i=1}^{N} J_{ij} \sigma_i \sigma_i + \sum_{i=1}^{N} J_{ij} \sigma_i + \sum_{i=1}^{$

DS-machines operate based on the system energy aka Hamiltonian:

$$\mathcal{H} = -\sum_{i \neq j}^{N} J_{ij} \sigma_i \sigma_j + \sum_{i}^{N} h_i \sigma_i^2, \ \sigma_i \in \mathbb{R}$$

The electrodynamics is designed to inherently drive the Hamiltonian towards a local minimum.

$$\frac{d\sigma_i}{dt} = \sum_{i \neq j}^{N} J_{ij}\sigma_j - h_i\sigma_i = -\frac{1}{2}\frac{\partial \mathcal{H}}{\partial \sigma_i}$$
$$\frac{d\mathcal{H}}{dt} = \sum_{i} \frac{\partial \mathcal{H}}{\partial \sigma_i} \frac{d\sigma_i}{dt} = -\frac{1}{2}\sum_{i} (\frac{\partial \mathcal{H}}{\partial \sigma_i})^2$$

Methodology

Department of Electrical and Computer Engineering, University of Rochester Institute of Technology³; Department of Statistics and Data Science, University of California, Los Angeles⁴

Inference Acceleration: Mapping existing LLM onto DS-machines

Step1: For a single linear layer

Approach 1: Hamiltonian level

- Shape the energy landscape -> map the minimum energy state to the desired output.
- Define a target function F to minimizes the difference between the output state of the DS-machine and the desired output:

$$F = ||Y_{DS} - X_{DS}W^T||_F^2 = \sum_{i,l} (y_{il} - \sum_j w_{ij}x_{jl})^2$$

• Align to the Hamiltonian of DS-machines:

$$\hat{F} = \sum_{(i,l)} y_{il}^2 - 2\sum_{(i,l)} (y_{il} \sum_{j}^{N} w_{ij} x_{jl})$$

• Map the linear layer to DS-machines. $\sqrt{}$

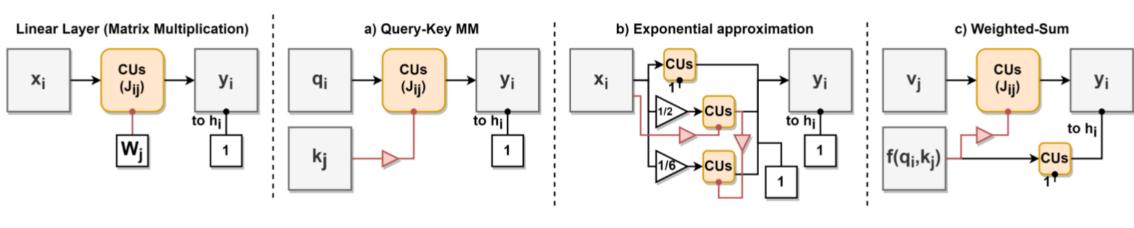
Approach 2: Electrodynamics level

- Guide the electrodynamics behavior by the coupling parameters J and self-reaction parameters h.
- Lyapunov stability analysis -> $d\sigma/dt = 0$ when DS-machines stop evolving.
- Dividing the spins σ into input x and output y:

$$y_i = \frac{\sum_{j=1}^{N} J_{ij} x_j}{h_i}$$

- Directly program J and h to map the linear layer to DS-machines. $\sqrt{}$
- Equivalent to Hamiltonian level approach.

Step2: Extend the mapping approach to key operations in LLMs

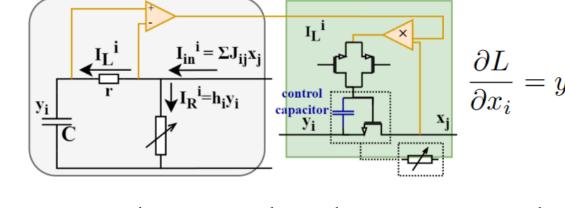


Exponential approximation: $exp(x_i)_{\text{Taylor3}} = 1 + x + 1/2x^2 + 1/6x^3$ Weighted-Sum in Attention: $\hat{F} = -\sum f(q_i, k_j) y_i v_j + \sum_{i=1}^{N} \frac{1}{2} \sum f(q_i, k_j) y_i^2$

General solution: $\hat{F}^{(p)} = (x^{(p+1)})^2 - 2x^{(p+1)}f^{(p)}(x^{(p)})$ $x^{(P+1)} = f^{(P)} \circ f^{(P-1)} \circ \cdots \circ f^{(1)}(x^1)$

Training Acceleration: Online Training with Electric-Current-Loss

- Macro-scale observation: A well-trained DS-machine reaches its energy minimum when its output spins align with the ground truth from the training data.
- Micro-scale: The total incoming electric current $I_{in}^{i} = \Sigma J_{ij} x_j$ must balance the internal current $I_R^{i} = h_i y_i$ to ensure the voltage remains stable $(dy_i/dt = 0)$.



- Map the ground truth output onto the output spins and fix their values.
- Define an electric-current-loss function equal to the current through the sampling resistor r, $I_L = I_{in} I_R$.

• Update J_{ij} using gradient descent based on ECL.

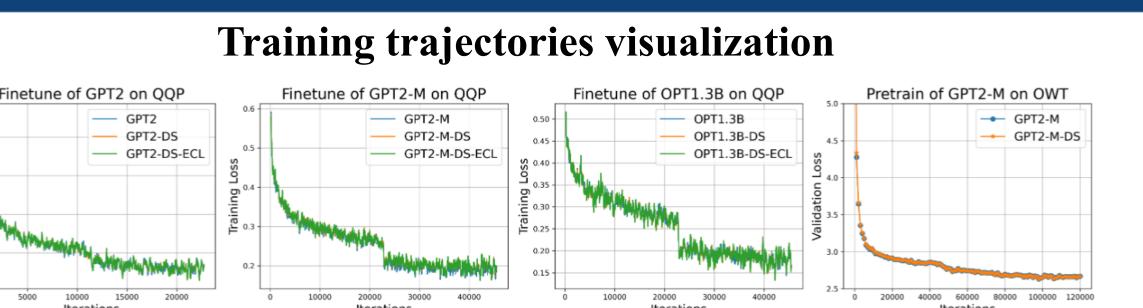
$$\Delta J_{ij} = \frac{\partial L_{\text{EC}}}{\partial J_{ij}} = \frac{\partial L_{\text{EC}}}{\partial I_{\text{L}}^{i}} \frac{\partial I_{\text{L}}^{i}}{\partial J_{ij}} = 2I_{\text{L}}^{i} x_{j}$$

- The multiplication of the loss current I_L by the spin voltage x_i is implemented at circuit level.
- Feed back electric-current ΔJ_{ij} to coupling units.
- Parameters update: $J_{ij} \rightarrow J_{ij} \Delta J_{ij} \Delta t$ by integrating the result current on over a time interval Δt .

Combine ECL with BP

- **→**Enable online training
- →Eliminates output readout
- →Efficient training on DS-machines

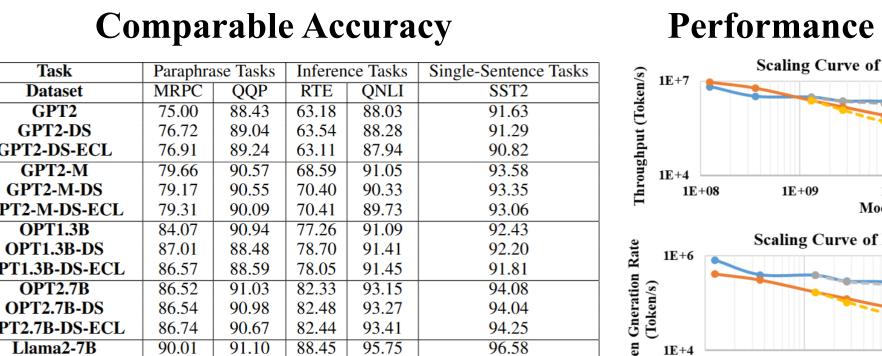
Evaluations

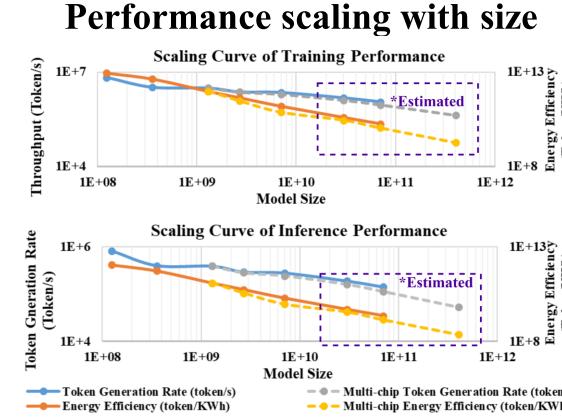


DS-LLM exhibit convergence curves that closely match original models on GPU, effectively replicating the performance of traditional LLMs on DS-machines.

96.32

95.79





Hardware Performance Compared to GPU

	Training		Inference		
Metric	Throughput	Energy Efficiency	Time to First Token	Token Generation Rate	Energy Efficien
	(token/s)	(token/KWh)	(s)	(token/s)	(token/KWh)
GPT2	1.37E+04	6.19E+07	6.46E-05	1.55E+04	1.39E+08
GPT2-DS	6.70E+06	8.93E+12	1.20E-06	8.33E+05	1.11E+12
gpt2-m	3.24E+03	1.46E+07	1.80E-04	5.55E+03	5.18E+07
gpt2-m-DS	3.27E+06	4.36E+12	2.48E-06	4.03E+05	5.38E+11
OPT1.3B	1.20E+03	5.41E+06	2.76E-04	3.62E+03	3.41E+07
OPT1.3B-DS	3.08E+06	9.56E+11	2.55E-06	3.92E+05	1.22E+11
OPT2.7B	3.97E+02	1.78E+06	8.12E-04	1.23E+03	1.13E+07
OPT2.7B-DS	2.33E+06	4.37E+11	3.41E-06	2.93E+05	5.50E+10
Llama2-7B	1.34E+02	6.05E+05	2.51E-03	3.98E+02	3.82E+06
Llama2-7B-DS	2.24E+06	1.56E+11	3.57E-06	2.80E+05	1.95E+10

Speedup: Train: 5.3×10^3 Inference: 2.4×10^2

Energy Save
Train: 2.3×10^5 Inference: 6.4×10^3

Conclusion

- DS-LLM: the first algorithmic framework to bridge LLMs to DS-machines.
- The mathematical equivalence between DS-LLM and original LLMs is proven and validated through experiments on models from GPT-2 to Llama2-7B.
- Results demonstrate **consistent accuracy** while achieving a **5.3**×**10**³ **speedup** for training and **2.4**×**10**² for inference, along with a **reduction in energy consumption** of **2.3**×**10**⁵ during training and **6.4**×**10**³ during inference.
- DS-LLM presents a promising new solution for the community with significant opportunities for further exploration in future studies. We look forward to seeing more exciting developments emerge in this area!