EVALUATING SEMANTIC VARIATION IN TEXT-TO-IMAGE SYNTHESIS: A CAUSAL PERSPECTIVE

Xiangru Zhu, Penglei Sun, Yaoxian Song, Yanghua Xiao, Zhixu Li, Chengyu Wang, Jun Huang, Bei Yang, Xiaoxiao Xu

Fudan University & Alibaba Group

Problem

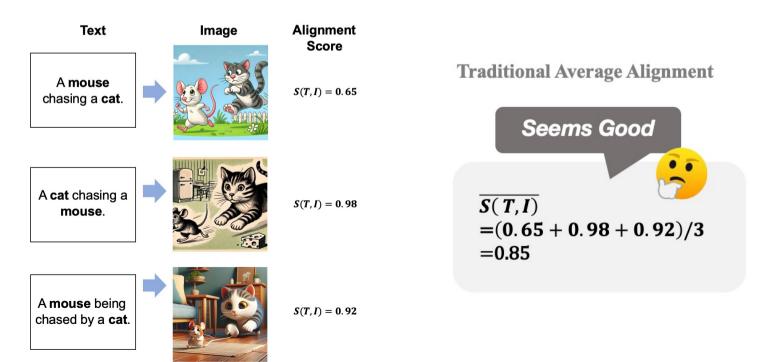
- Current T2I models struggle to capture semantic variations from word order changes
 - Models often treat text prompts as "bags of words"
 - Different permutations with distinct meanings yield similar images

Input Prompt: A cat chasing a mouse.

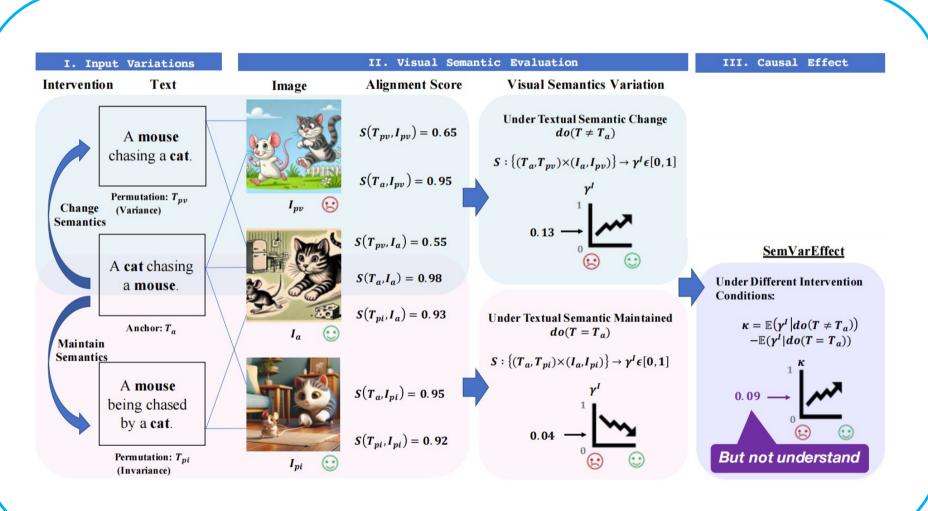
Input Prompt: A mouse chasing a cat.

Midjourney V6 Ideogram 2

Stable Diffusion 3


FLUX.1

CogView-3-Plus


DALL-E 3

Limitations of Current Evaluations

- Existing evaluation metrics rely on indirect measures but fail to reliably assess semantic understanding.
 - Indirect measurement: Text-image alignment score as proxy
 - High scores may obscure poor performance on complex patterns
 - Focuses on frequent word combinations

Framework for measuring semantic variation causality

Input Variations

■ **Permutation-Variance:** Different word orders → different meanings

A cat chasing a mouse.

Change Semantics

A mouse chasing a cat.

Anchor: T_a

Permutation: T_{pv}

Permutation-Invariance: Different word orders → same meaning

A cat chasing a mouse.

Maintain Semantics A mouse being chased by a cat.

Anchor: T_a

Permutation: T_{pi}

Definition of Visual Semantic Variations

1. Define visual semantic variations observed from a single sentence T

For each image I and its localized variation $I + \Delta I$, the visual semantic variation at I, denoted as $\mu_I(T, I)$, is the difference in alignment scores between the two images for the same sentence:

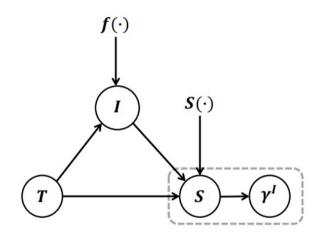
$$\mu_I(T,I) = S(T,I + \Delta I) - S(T,I)$$

When anchor image I_a is transformed into permutation image I_{p*} through localized changes, the total visual semantic variation is the sum across all changes:

$$\sum_{I_a}^{I_{p*}} \mu_I (T, I) = S(T, I_{p*}) - S(T, I_a)$$

Definition of Visual Semantic Variations

■ 2. Integrate visual semantic variations observed across multiple sentences


For sentences T_a and T_{p*} , the visual semantic variations have opposite directions. To measure total magnitude regardless of direction, we use absolute values:

$$\gamma^{I} = \sum_{T \in \{T_{a}, T_{p*}\}} \left| \sum_{I_{a}}^{I_{p*}} \mu(T, I) \right|$$

$$= \left| S(T_{a}, I_{p*}) - S(T_{a}, I_{a}) \right| + \left| S(T_{p*}, I_{p*}) - S(T_{p*}, I_{a}) \right|$$

Causality Between Textual and Visual Semantic Variations

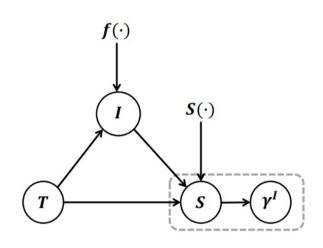
■ Causal relationship between the input and the output semantic variations.

T: text input

I: generated image

 ${\it S}$: text-image alignment score

 γ^I : visual semantic variation


 $f(\cdot)$: T2I model that maps T to I

 $S(\cdot)$: scoring function that maps T and I to S

 γ^I is the sum of absolute differences in alignment scores S between original and permuted textimage pairs.

Causality Between Textual and Visual Semantic Variations

■ Causal relationship between the input and the output semantic variations.

- $\blacksquare T \rightarrow \text{input variable}$ independent
- $I \rightarrow$ mediator
- \blacksquare S \rightarrow intermediate result variable
- $\blacksquare \gamma^I \rightarrow$ final comparison result variable
- $\blacksquare f(\cdot) \rightarrow$ exogenous variable
- $S(\cdot)$ → exogenous variable

Define the ACE of textual semantic variations on visual semantic variations as the SemVarEffect score.

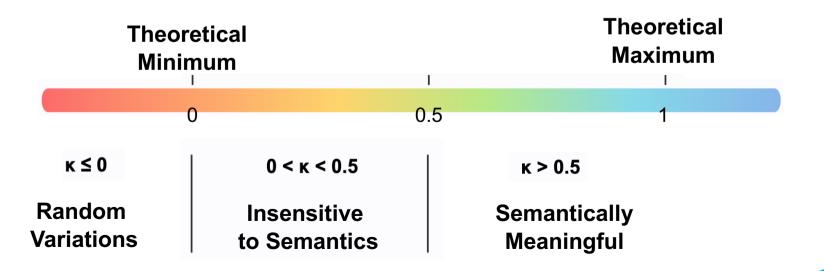
Average Causal Effect (ACE) of Textual Semantic Variations

■ Two types of interventions:

do(T ≠ Ta): Variations with semantic changes

$$\mathbb{E}[\gamma^{I}|do(T \neq T_{a})] = |S(T_{a}, I_{pv}) - S(T_{a}, I_{a})| + |S(T_{pv}, I_{pv}) - S(T_{pv}, I_{a})| = \gamma_{w/1}^{I}$$

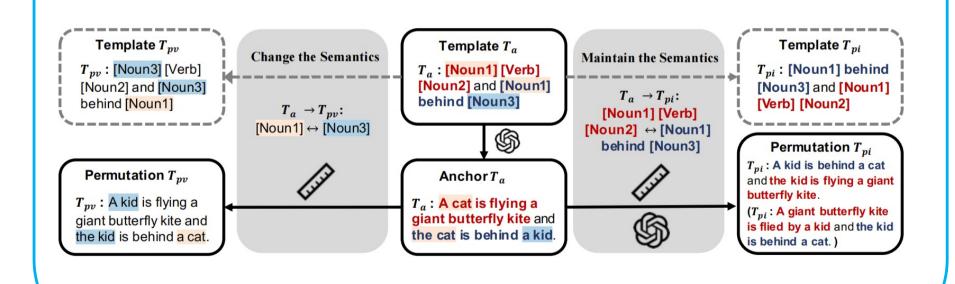
do(T = Ta): Variations without semantic changes


$$\mathbb{E}[\gamma^{I}|do(T=T_{a})] = |S(T_{a}, I_{pi}) - S(T_{a}, I_{a})| + |S(T_{pi}, I_{pi}) - S(T_{pi}, I_{a})| = \gamma^{I}_{w/o}$$

■ Average Causal Effect (SemVarEffect score):

$$\kappa = \mathbb{E}[\gamma^I | do(T \neq T_a)] - \mathbb{E}[\gamma^I | do(T = T_a)] = \gamma_{w/}^I - \gamma_{w/o}^I$$

Understanding the SemVarEffect Score (κ)

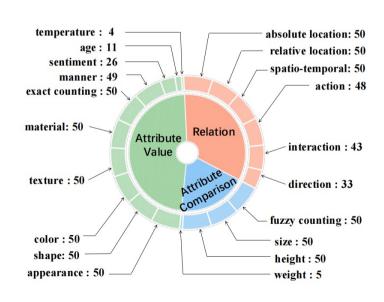

- Components: Alignment score $S(\cdot)$ includes object and relation (triple) components, each contributing up to 0.5 to the total score.
- Theoretical Bounds: The SemVarEffect score κ provides justified bounds (0.5-1.0) for evaluation.
- **Ideal Range:**

Proposed Benchmark: SemVarBench

Data Collection Process

- **Extract templates from seed pairs** $\rightarrow T_a$
- Generate permutations from templates $\rightarrow T_{pv}$ and T_{pi}
- Human verification and annotation
- Hard sample selection for testing

Proposed Benchmark: SemVarBench


Statistics

■ Key Properties

- 11,454 samples (10,806 training, 648 testing)
- 20 Categories divided by semantic variation types
- Targets two types of linguistic permutations
- Expert-annotated for quality control

■ Categories

- Relation
- Attribute Comparison
- Attribute Value

Experimental Setup

■ Model Evaluated:

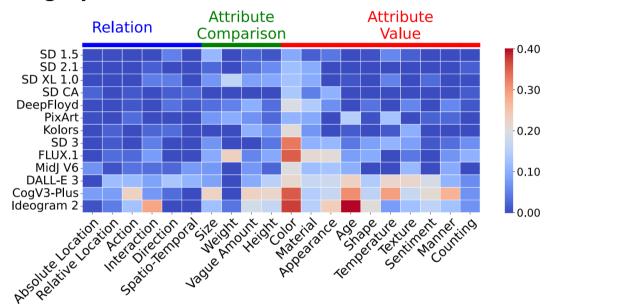
■ 13 Mainstream Diffusion-based T2I models

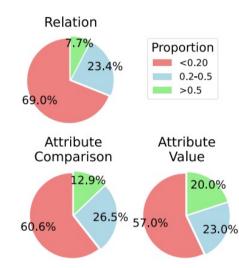
■ Evaluation Metrics:

- *S* : Text-image alignment score
- \blacksquare κ : SemVarEffect score
 - \blacksquare $\gamma_{w/}^{I}$: Visual semantic variation with semantic change
 - $= \gamma_{w/o}^{I}$: Visual semantic variation with meaning maintenance

■ Evaluators

■ 4 MLLMs and Human

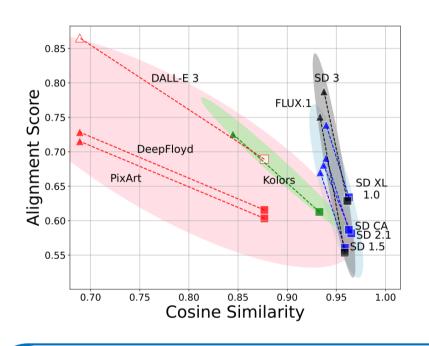

Key Findings

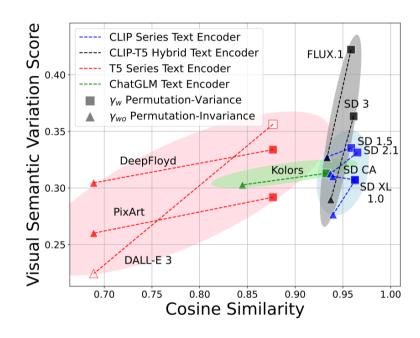

Models		Gemin	i 1.5 Pro			Claude 3	3.5 Sonnet			GP	T-4o			GPT-	4 Turbo	
	$\overline{\bar{S}}(\uparrow) \mid \gamma$	$\gamma_w(\uparrow)$	$ \gamma_{wo}(\downarrow)$	κ(†)	$\bar{S}(\uparrow)$	$\gamma_w(\uparrow)$	$ \gamma_{wo}(\downarrow)$	κ(†)	$\bar{S}(\uparrow)$	$ \gamma_w(\uparrow) $	$\mid \gamma_{wo}(\downarrow) \mid$	$\kappa(\uparrow)$	$\bar{S}(\uparrow)$	$\gamma_w(\uparrow)$	$ \gamma_{wo}(\downarrow)$	$\kappa(\uparrow)$
Open-source Models																
SD 1.5	0.55	0.43	0.46	-0.03	0.64	0.19	0.20	-0.01	0.63	0.34	0.33	0.01	0.65	0.32	0.32	0.00
SD 2.1	0.58	0.45	0.46	-0.01	0.66	0.21	0.20	0.01	0.65	0.33	0.31	0.02	0.68	0.35	0.34	0.01
SD XL 1.0	0.62	0.39	0.39	-0.00	0.69	0.19	0.18	0.00	0.71	0.31	0.28	0.03	0.72	0.32	0.28	0.03
SD CA	0.59	0.42	0.41	0.01	0.69	0.19	0.18	0.01	0.67	0.31	0.31	-0.00	0.69	0.32	0.31	0.01
DeepFloyd	0.64	0.44	0.44	0.00	0.71	0.20	0.19	0.01	0.69	0.33	0.30	0.03	0.74	0.33	0.28	0.05
PixArt	0.60	0.35	0.32	0.02	0.69	0.17	0.15	0.02	0.70	0.29	0.26	0.03	0.71	0.29	0.27	0.02
Kolors	0.60	0.41	0.42	-0.01	0.69	0.22	0.22	-0.01	0.69	0.31	0.30	0.01	0.69	0.33	0.30	0.02
SD 3	0.67	0.45	0.40	0.05	0.76	0.23	0.19	0.04	0.75	0.36	0.29	0.07	0.76	0.33	0.28	0.05
FLUX.1	0.72	0.43	0.35	0.08	0.75	0.23	<u>0.17</u>	0.06	0.72	0.42	0.33	0.10	0.75	<u>0.40</u>	0.30	0.10
	API-based Models															
MidJ V6	0.68	0.46	0.39	0.07	0.73	0.24	0.21	0.03	0.72	0.40	0.33	0.07	0.73	0.38	0.32	0.06
DALL-E 3	0.75	0.46	0.33	0.14	0.80	0.25	0.18	0.06	0.82	0.36	0.22	0.13	0.83	0.35	0.30	0.10
CogV3-Plus	<u>0.79</u>	0.52	0.35	<u>0.17</u>	0.80	0.28	0.18	0.10	0.81	0.49	0.28	0.20	0.82	0.43	<u>0.26</u>	0.17
Ideogram 2	0.80	0.47	0.29	0.18	<u>0.79</u>	0.26	<u>0.17</u>	0.09	<u>0.81</u>	<u>0.46</u>	0.27	0.20	0.81	0.40	0.24	<u>0.15</u>

- Even SOTA models struggle with semantic variations
 - Best models (CogView-3-Plus and Ideogram 2) achieve only 0.2/1.0 SemVarEffect score
 - All models scored below 0.20, far from the ideal score of 1.0

Key Findings

Does the influence of input semantic variations on output semantic variations vary by category?





- Semantic variations in object relations are less understood than attributes
 - Relation aspects scored 0.07/1.0 on average
 - Attribute values scored 0.17-0.19/1.0 on average
 - Color variations were best understood (0.4+ scores in top models)

Key Findings

Is a superior text encoder the exclusive solution for T2I models to grasp semantic variations?

- Cross-modal alignment in UNet or Transformers plays a crucial role
 - Superior text encoders alone are not sufficient
 - FLUX.1 with weaker text encoders outperformed some models with stronger encoders

Fine-Tuning Experiments

Does fine-tuning improve T2I model performance on semantic variations?

Category	Models	GPT-40					
		$ \bar{S}(\uparrow) $	$\gamma_w(\uparrow)$	$\gamma_{wo}(\downarrow)$	$\kappa(\uparrow)$		
	SD XL	0.73	0.33	0.25	0.08		
Color	+ sft-unet	0.78 (↑)	0.38(\(\frac{1}{2}\))	0.20 (↓)	0.18 (↑)		
Coloi	+ sft-text	0.73(-)	$0.40(\uparrow)$	$0.27(\uparrow)$	$0.13(\uparrow)$		
	+ dpo-unet	0.69(\dagger)	<u>0.43</u> (†)	$0.27(\uparrow)$	$0.17(\uparrow)$		
	+ dpo-text	0.68(\dagger)	0.47 (↑)	0.29(†)	0.18 (†)		
	SD XL	0.64	0.29	0.34	-0.05		
Absolute	+ sft-unet	0.65 (†)	0.34 (†)	$0.32(\downarrow)$	0.02 (†)		
Location	+ sft-text	0.64(-)	0.31(\(\frac{1}{2}\))	0.36(\(\frac{1}{2}\))	-0.05(-)		
	+ dpo-unet	0.60(\dagger)	$0.29(\uparrow)$	0.31 (↓)	<u>-0.02</u> (†)		
	+ dpo-text	0.57(\dagger)	<u>0.33</u> (↑)	0.39 (†)	- 0.07(↓)		

Category	Models		GPT	T-4o	
		$ar{S}(\uparrow)$	$\mid \gamma_w(\uparrow) \mid$	$\gamma_{wo}(\downarrow)$	$\kappa(\uparrow)$
	SD XL	0.77	0.34	0.23	0.10
Height	+ sft-unet	0.77 (-)	$0.33(\downarrow)$	$0.24(\uparrow)$	$0.09(\downarrow)$
Height	+ sft-text	$0.73(\downarrow)$	<u>0.39(†)</u>	$0.34(\uparrow)$	$0.05(\downarrow)$
	+ dpo-unet	0.71(\dagger)	0.34(-)	$0.33(\uparrow)$	$0.02(\downarrow)$
	+ dpo-text	0.66(\dagger)	0.40 (†)	0.53(†)	-0.13(↓)
	SD XL	0.79	0.20	0.15	0.05
Direction	+ sft-unet	$0.77(\downarrow)$	$0.24(\uparrow)$	$0.23(\uparrow)$	$0.01(\downarrow)$
Direction	+ sft-text	$0.77(\downarrow)$	$0.23(\uparrow)$	$0.21(\uparrow)$	$0.02(\downarrow)$
	+ dpo-unet	0.65(\dagger)	$0.23(\uparrow)$	$0.26(\uparrow)$	- 0.03(↓)
	+ dpo-text	0.70(\dagger)	0.29 (†)	0.27(\(\epsilon\))	0.01(\dagger)

- Balancing sensitivity and robustness to semantic variations remains a challenge
 - DPO led to performance drops in permutation-invariance

Fine-Tuning Experiments

Does fine-tuning improve T2I model performance on semantic variations?

Category	Models	GPT-4o						
87		$\bar{S}(\uparrow)$	$ \gamma_w(\uparrow) $	$\gamma_{wo}(\downarrow)$	$\kappa(\uparrow)$			
	SD XL	0.73	0.33	0.25	0.08			
Color	+ sft-unet	0.78 (↑)	0.38(\(\frac{1}{2}\))	0.20 (↓)	0.18 (↑)			
Color	+ sft-text	0.73(-)	0.40(\(\frac{1}{2}\))	$0.27(\uparrow)$	0.13(\(\epsilon\))			
	+ dpo-unet	$0.69(\downarrow)$	<u>0.43</u> (↑)	$0.27(\uparrow)$	$0.17(\uparrow)$			
	+ dpo-text	0.68(\dagger)	0.47 (↑)	0.29(†)	0.18 (↑)			
	SD XL	0.64	0.29	0.34	-0.05			
Absolute	+ sft-unet	0.65 (↑)	0.34 (↑)	$0.32(\downarrow)$	0.02 (†)			
Location	+ sft-text	0.64(-)	0.31(\(\frac{1}{2}\))	0.36(\(\frac{1}{2}\))	-0.05(-)			
	+ dpo-unet	$0.60(\downarrow)$	0.29(\(\frac{1}{2}\))	0.31 (\dagger)	<u>-0.02</u> (†)			
	+ dpo-text	0.57(\dagger)	<u>0.33</u> (↑)	0.39 (†)	-0.07(↓)			

Category	Models	GPT-40					
		$\bar{S}(\uparrow)$	$\mid \gamma_w(\uparrow) \mid$	$\gamma_{wo}(\downarrow)$	$\kappa(\uparrow)$		
	SD XL	0.77	0.34	0.23	0.10		
Height	+ sft-unet	0.77 (-)	$0.33(\downarrow)$	$0.24(\uparrow)$	$0.09(\downarrow)$		
Height	+ sft-text	$0.73(\downarrow)$	<u>0.39</u> (†)	0.34(\(\frac{1}{2}\))	$0.05(\downarrow)$		
	+ dpo-unet	0.71(\dagger)	0.34(-)	$0.33(\uparrow)$	$0.02(\downarrow)$		
	+ dpo-text	0.66(\dagger)	0.40 (†)	0.53(†)	- 0.13(↓)		
	SD XL	0.79	0.20	0.15	0.05		
Direction	+ sft-unet	$0.77(\downarrow)$	$0.24(\uparrow)$	$0.23(\uparrow)$	$0.01(\downarrow)$		
Direction	+ sft-text	$0.77(\downarrow)$	$0.23(\uparrow)$	$0.21(\uparrow)$	$0.02(\downarrow)$		
	+ dpo-unet	$0.65(\downarrow)$	$0.23(\uparrow)$	0.26(\(\frac{1}{2}\))	-0.03(\lambda)		
	+ dpo-text	0.70(↓)	0.29 (†)	0.27(\(\epsilon\))	0.01(\dagger)		

Category	Model	Token Accuracy			
		$ T_a $	T_{pv}	T_{pi}	
Absolute	SDXL	0.709	0.640	0.716	
Location	SDXL +sft-unet	0.718	0.654	0.716	

Category	Model	Toke T_a	n Accuracy T_{pv} T_p	
Height	SDXL	0.881	0.660	0.861
	+sft-unet	0.886	0.662	0.866

- Fine-tuning improves token-region correspondence but fails to enhance understanding of semantic relationships between tokens
 - Token-level accuracy improved without enhancing semantic understanding

Fine-Tuning Experiments

Do T2I models' struggles with semantic relationships stem from training data imbalance?

Class	Reasons	SD	XL	FT SD XL (trained on cat↔dog)		
Class	Reasons	mouse→cat	$cat \rightarrow mouse$	mouse→cat	cat→mouse	
	Missing Objects	12	14	12	21	
	No Interaction	4	5	2	1	
Wrong	Wrong Interaction	3	1	4	2	
	Wrong Direction	7	8	4	1	
	Reversed Role	2	0	5	2	
Right	Partial/Full Match	0	2	3	3	

Class	Reasons	SD	XL	FT SD XL (trained on cat↔dog)		
Class	Reasons	bull→man	man→bull	bull→man	man→bull	
	Missing Objects	0	0	0	0	
	No Interaction	6	12	6	13	
Wrong	Wrong Interaction	5	2	0	0	
	Wrong Direction	16	12	11	9	
	Reversed Role	2	2	9	3	
Right	Partial/Full Match	1	2	4	5	

■ Even with perfectly balanced training data, models fail to understand directional relationships

Resources & Contact Information

SemVarBench Dataset

github.com/zhuxiangru/SemVarBench

Contact

xrzhu19@fudan.edu.cn

Scan to access SemVarBench
We welcome collaborations and feedback!

Our Lab's Previous Work

- Knowledge Works Research Laboratory
- @ Fudan University
- ## http://kw.fudan.edu.cn/

Scan to access Knowledge Works