

Outlier Synthesis via Hamiltonian Monte Carlo for Out-of-Distribution Detection

Hengzhuang Li, Teng Zhang

School of Computer Science and Technology,

Huazhong University of Science and Technology, Wuhan, China

Contents

- Introduction
- Motivation
- Method
- Results
- Conclusion

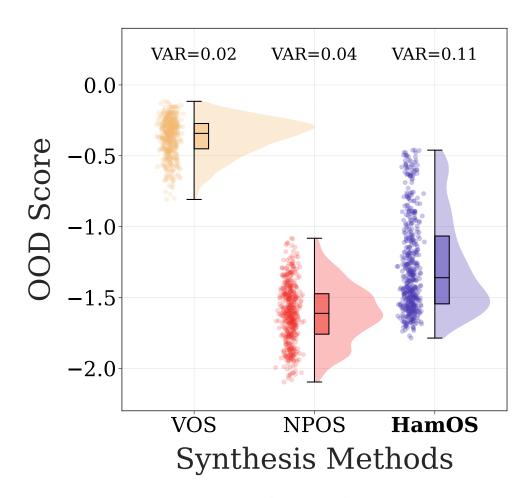
Introduction

- Task: fine-tuning based out-of-distribution (OOD) detection without access to auxiliary OOD dataset
- Outlier synthesis: synthesize virtual outliers which serve as surrogated OOD supervision signals
- Results: our proposed framework HamOS synthesizes high quality outliers and outperforms previous baselines

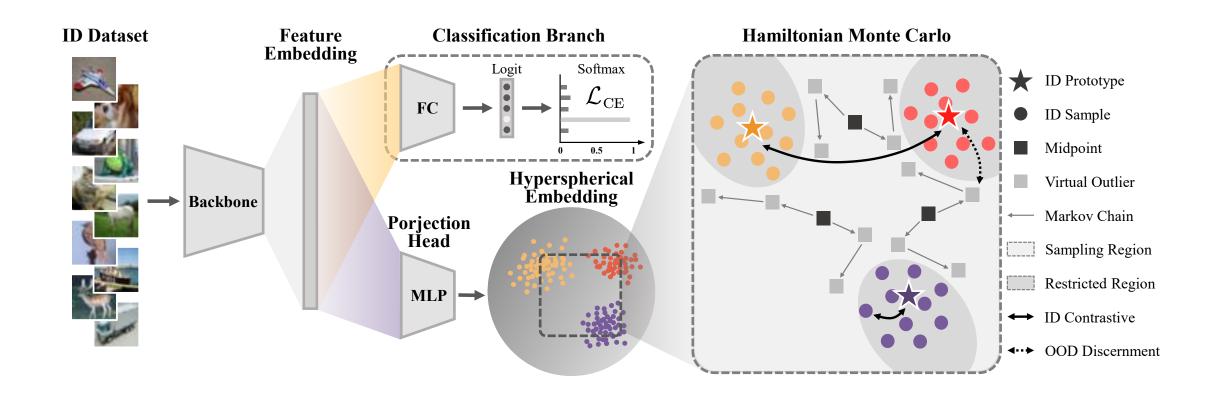
Motivation

- Pixel space outlier synthesis
 - E.g., Dream-OOD [1]
 - To generate pixel space outliers through the generative models, e.g., diffusion model.
- Feature space outlier synthesis
 - E.g., VOS [2], NPOS [3]
 - To generate outliers in the feature space through sampling algorithms,
 e.g. Gaussian.

- [1] Du, et al. Dream the impossible: Outlier imagination with diffusion models. In NIPS, 2023.
- [2] Du, et al. Vos: Learning what you don't know by virtual outlier synthesis. In ICLR, 2022.
- [3] Tao, et al. Non-parametric outlier synthesis. In ICLR, 2023.


Motivation

Our goal


 To efficiently synthesize diverse and representative outliers based solely on the ID data

Idea

 Modeling the synthesis process as Markov chain

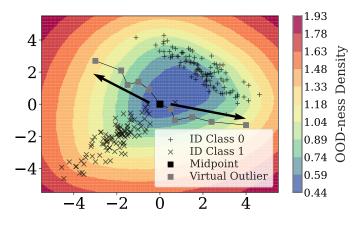
OOD score distributions

- Synthesizing Outliers via Hamiltonian Monte Carlo (HMC)
 - Estimating OOD density via the distance to the k-th nearest neighbor: we design a quantitative characterizing of the likelihood that a sample is OOD rather than ID.

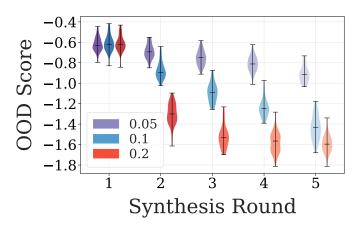
$$egin{aligned} P^{ ext{OOD}}(oldsymbol{z}; oldsymbol{\mathcal{Z}}_{c}) &= \|oldsymbol{z} - oldsymbol{z}_{c(k)}\|_{2} & P^{ ext{OOD}}(oldsymbol{z}; oldsymbol{\mathcal{Z}}_{u}, oldsymbol{\mathcal{Z}}_{v}) = rac{P^{ ext{OOD}}(oldsymbol{z}; oldsymbol{\mathcal{Z}}_{u}) + P^{ ext{OOD}}(oldsymbol{z}; oldsymbol{\mathcal{Z}}_{v})}{2} \ U^{ ext{OOD}}(oldsymbol{z}; oldsymbol{\mathcal{Z}}_{u}, oldsymbol{\mathcal{Z}}_{v}) = -\log \sum_{i=u,v} P^{ ext{OOD}}(oldsymbol{z}; oldsymbol{\mathcal{Z}}_{i}) + ext{constant} \end{aligned}$$

• Synthesizing outliers by OOD density estimation via HMC: we generate virtual outliers along the Markov chains by solving the Hamilton's Equation.

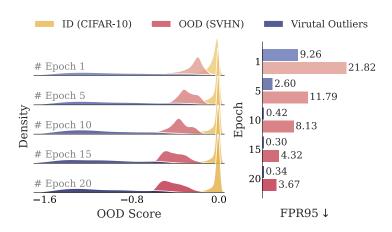
$$H(oldsymbol{z},oldsymbol{q}) = U^{ ext{OOD}}(oldsymbol{z}) + rac{1}{2} \|oldsymbol{q}\|_2^2$$


Rejecting erroneous outliers located within ID clusters: we reject false outliers that
conflate with ID embeddings by applying a hard margin according to the ID
probability.

$$egin{aligned} t_- = -\log \max_c P_c^{ ext{ID}}(\mathbf{b}_{u,v}) - \delta \quad \mathbf{b}_{u,v} = rac{oldsymbol{\mu}_u + oldsymbol{\mu}_v}{\|oldsymbol{\mu}_u + oldsymbol{\mu}_v\|_2} \end{aligned}$$


- Training with Synthesized Outliers
 - We fine-tune the model with the OOD discernment loss, the contrastive loss, and the cross-entropy loss to help broaden the gap between ID and OOD data.

$$\mathcal{L}_{ ext{OOD-disc}} = rac{1}{M} \sum_{i=1}^{M} rac{1}{C} \sum_{j=1}^{C} \log rac{\exp{(oldsymbol{z}_i^ op oldsymbol{\mu}_j/ au)}}{\sum_{l=1}^{C} \exp{(oldsymbol{z}_i^ op oldsymbol{\mu}_l/ au)}}$$


$$\mathcal{L}_{ ext{HamOS}} = \mathcal{L}_{ ext{CE}} + \mathcal{L}_{ ext{ID-con}} + \lambda_d \mathcal{L}_{ ext{OOD-disc}}$$

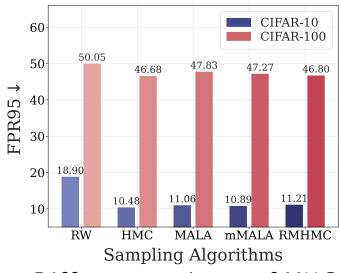
Depiction of the designed OODness density estimation.

Varied OOD scores of the generated outliers at different synthesis rounds.

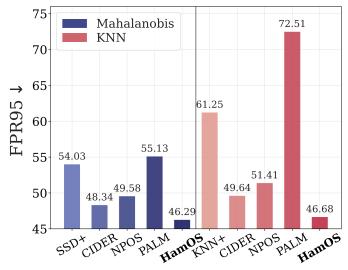
OOD performance is improved continuously along the training process.


Results

Main results: CIFAR10/100 benchmarks

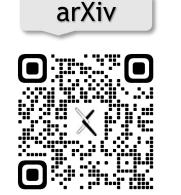

Methods	CIFAR-10				CIFAR-100			
	FPR95↓	AUROC↑	AUPR↑	ID-ACC↑	FPR95↓	AUROC↑	AUPR↑	ID-ACC↑
Post-hoc Methods								
MSP ODIN EBO KNN ASH Scale Relation	$\begin{array}{c c} 32.17_{\pm 6.38} \\ 58.04_{\pm 18.46} \\ 41.85_{\pm 13.78} \\ 22.86_{\pm 1.12} \\ 54.22_{\pm 26.06} \\ 63.18_{\pm 23.64} \\ 26.28_{\pm 1.63} \end{array}$	$\begin{array}{c} 91.10_{\pm 0.71} \\ 85.70_{\pm 4.17} \\ 91.79_{\pm 1.54} \\ 92.98_{\pm 0.42} \\ 87.37_{\pm 6.60} \\ 77.74_{\pm 16.24} \\ 92.31_{\pm 0.43} \end{array}$	$\begin{array}{c} 81.70_{\pm 5.82} \\ 70.08_{\pm 11.84} \\ 79.70_{\pm 8.10} \\ 88.74_{\pm 0.79} \\ 72.33_{\pm 16.40} \\ 63.03_{\pm 20.52} \\ 86.75_{\pm 0.98} \end{array}$	$\begin{array}{c} 95.17_{\pm 0.16} \\ 95.17_{\pm 0.16} \\ 95.17_{\pm 0.16} \\ 95.17_{\pm 0.16} \\ 95.10_{\pm 0.14} \\ 95.15_{\pm 0.16} \\ 95.17_{\pm 0.16} \end{array}$	$\begin{array}{c c} 59.78 \pm 2.16 \\ 63.49 \pm 2.51 \\ 60.86 \pm 1.87 \\ 56.96 \pm 2.96 \\ 66.84 \pm 0.87 \\ 69.27 \pm 2.31 \\ 59.64 \pm 2.48 \end{array}$	$77.25_{\pm 1.28} \\78.01_{\pm 1.62} \\78.32_{\pm 1.31} \\81.01_{\pm 1.19} \\77.14_{\pm 1.12} \\77.25_{\pm 1.01} \\79.69_{\pm 1.08}$	$\begin{array}{c} 66.86_{\pm 1.58} \\ 65.20_{\pm 2.19} \\ 66.73_{\pm 1.35} \\ 70.60_{\pm 2.29} \\ 62.24_{\pm 0.73} \\ 61.42_{\pm 1.42} \\ 68.76_{\pm 1.78} \end{array}$	$76.69_{\pm 0.24} \\76.69_{\pm 0.25} \\76.69_{\pm 0.24} \\76.69_{\pm 0.24} \\76.20_{\pm 0.23} \\76.69_{\pm 0.24} \\76.69_{\pm 0.24}$
Regularization-based Methods								
CSI SSD+ KNN+ VOS CIDER NPOS PALM HamOS(ours)	$\begin{array}{c c} 21.21_{\pm 1.68} \\ 18.49_{\pm 1.20} \\ 19.68_{\pm 1.86} \\ 42.37_{\pm 21.13} \\ 16.28_{\pm 0.68} \\ 14.39_{\pm 0.87} \\ 32.25_{\pm 4.14} \\ \textbf{10.48}_{\pm 0.76} \end{array}$	$\begin{array}{c} 93.73_{\pm 0.33} \\ 94.85_{\pm 0.57} \\ 94.41_{\pm 0.66} \\ 91.42_{\pm 3.38} \\ 95.76_{\pm 0.37} \\ 96.61_{\pm 0.26} \\ 90.54_{\pm 1.46} \\ \textbf{97.11}_{\pm 0.26} \end{array}$	$\begin{array}{c} 89.74_{\pm 0.68} \\ 90.88_{\pm 0.83} \\ 90.46_{\pm 0.66} \\ 79.16_{\pm 11.62} \\ 92.36_{\pm 0.06} \\ 93.35_{\pm 0.74} \\ 84.44_{\pm 2.14} \\ 94.94_{\pm 0.86} \end{array}$	$\begin{array}{c} 92.03_{\pm 0.72} \\ 93.95_{\pm 0.57} \\ 93.79_{\pm 0.63} \\ 95.05_{\pm 0.05} \\ 93.98_{\pm 0.16} \\ 93.95_{\pm 0.13} \\ 93.93_{\pm 0.98} \\ 94.67_{\pm 0.15} \end{array}$	$\begin{array}{c} 69.34_{\pm 0.86} \\ 54.03_{\pm 1.92} \\ 61.25_{\pm 0.81} \\ 58.55_{\pm 1.53} \\ 49.64_{\pm 1.80} \\ 51.41_{\pm 1.88} \\ 55.13_{\pm 0.97} \\ \textbf{46.68}_{\pm 1.44} \end{array}$	$\begin{array}{c} 73.46_{\pm 0.37} \\ 80.64_{\pm 0.60} \\ 78.24_{\pm 0.93} \\ 81.40_{\pm 0.62} \\ 81.77_{\pm 0.95} \\ 81.02_{\pm 0.98} \\ 79.95_{\pm 1.26} \\ \textbf{83.64}_{\pm 0.64} \end{array}$	$\begin{array}{c} 61.57_{\pm 0.75} \\ 69.73_{\pm 1.09} \\ 66.64_{\pm 0.88} \\ 68.33_{\pm 1.61} \\ 73.22_{\pm 1.12} \\ 72.49_{\pm 1.54} \\ 70.21_{\pm 1.38} \\ \textbf{75.52}_{\pm 1.30} \end{array}$	$\begin{array}{c} 61.75_{\pm 0.15} \\ 75.63_{\pm 0.39} \\ 72.18_{\pm 0.58} \\ 74.71_{\pm 0.07} \\ 75.09_{\pm 0.49} \\ 74.53_{\pm 0.62} \\ 74.67_{\pm 0.36} \\ 76.12_{\pm 0.14} \end{array}$

Results


Ablation study

Different contrastive loss

Different variants of HMC

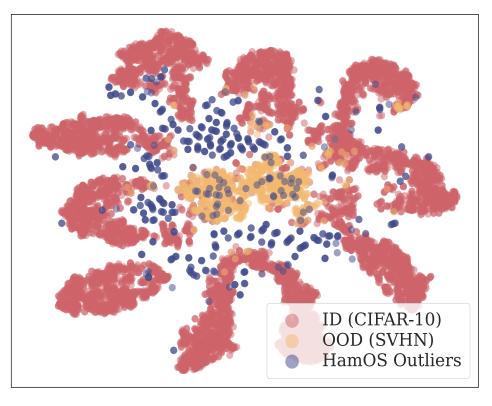


Different scoring functions

Conclusion

 We propose a novel framework HamOS to synthesize virtual outliers for OOD detection

Please Contact Us!



WeChat

Feature visualization via t-SNE