SEBRA:

Debiasing through Self-Guided Bias Ranking

Adarsh Kappiyath

Abhra Chaudhuri

Ajay Kumar Jaiswal

Ziquan Liu

Yunpeng Li

Xiatian Zhu

Lu Yin¹

Preliminaries

Empirical Risk Minimization (ERM) with CE Loss exhibit tendency to learn different attributes asynchronously during training.

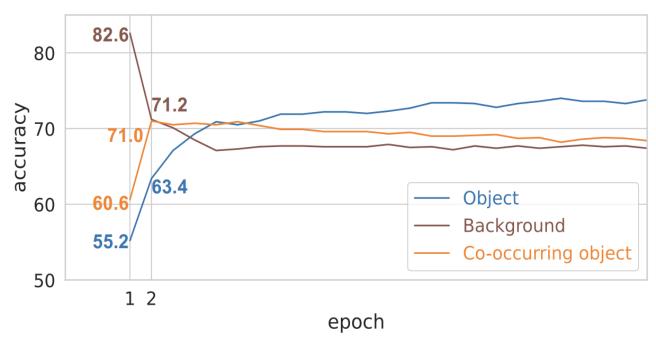


Fig 4. Training Dynamics of Resnet50 with CE Loss on UrbanCars dataset.

Preliminaries

Empirical Risk Minimization (ERM) with CE Loss exhibit tendency to learn different attributes asynchronously during training.

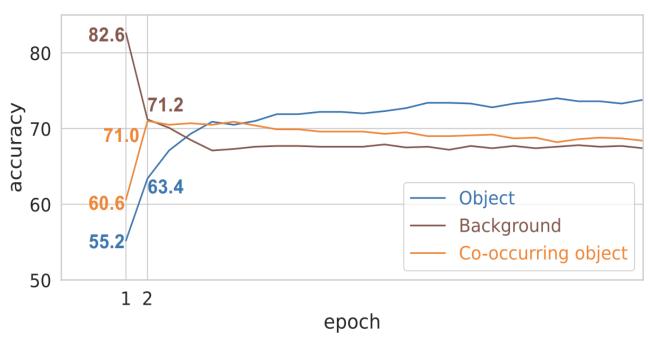


Fig 4. Training Dynamics of Resnet50 with CE Loss on UrbanCars dataset.

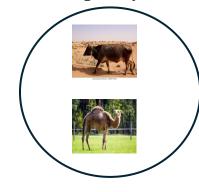
Idea: Modulate ERM dynamics to <u>rank/order</u> samples according to <u>spuriosity</u>. Mitigate biases based on ranking.

Prior Works

Spurious Correlation Identification

Mitigating Impact of Spurious Correlations

- Identification of Spurious Correlations.
 - o GCE Loss, Training with limited capacity models etc.

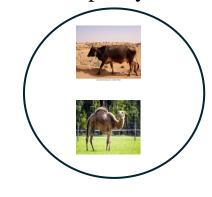


- Spuriosity of samples within a cluster
- Relative spuriosity across clusters

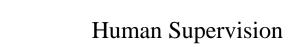
Prior Works

Spurious Correlation Mitigating Impact of **Spurious Correlations** Identification

- Identification of Spurious Correlations.
 - o GCE Loss, Training with limited capacity models etc.

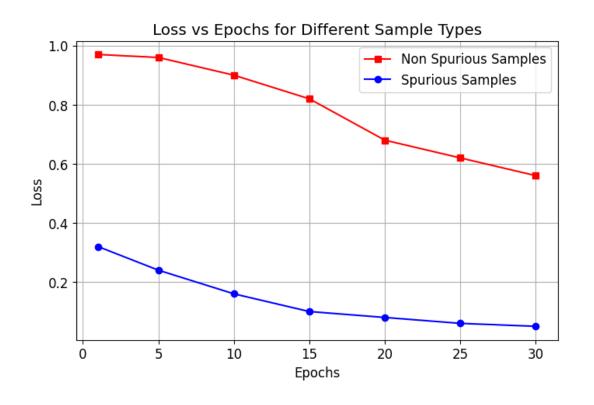


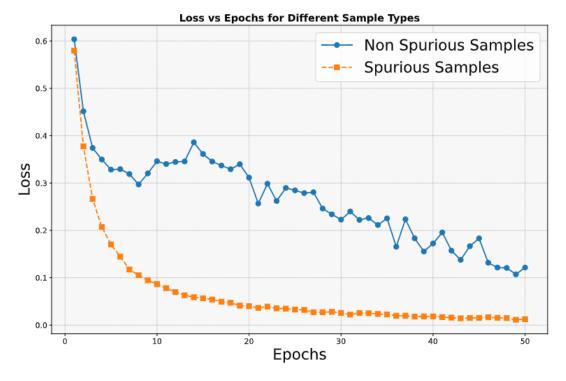
- Spuriosity of samples within a cluster
- Relative spuriosity across clusters



Assumption: Hardness Spuriosity Symmetry

The hardness of learning a sample, and its corresponding spuriosity measure, are symmetric to each other – the harder it is to learn a sample, the lower its spuriosity measure, and vice versa.





Deviation of ERM in the Multi-Bias Setting

Global trends of ERM deviate due to:

- Reliance on spurious features
- Non-uniform gradient updates.

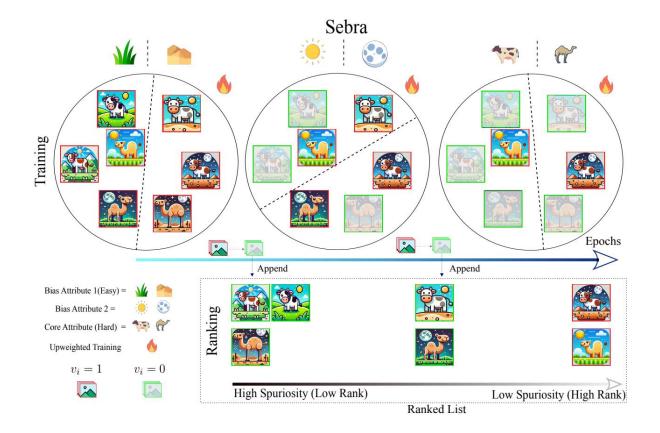
Steering ERM in the Multi-Bias Setting

Correcting deviation requires explicit steering towards to maintain the Hardness-Spuriosity Symmetry.

One bias at a time

Steering ERM in the Multi-Bias Setting

Correcting deviation requires explicit steering towards to maintain the Hardness-Spuriosity Symmetry.



• Spuriosity-Based Sequential Learning

One bias at a time

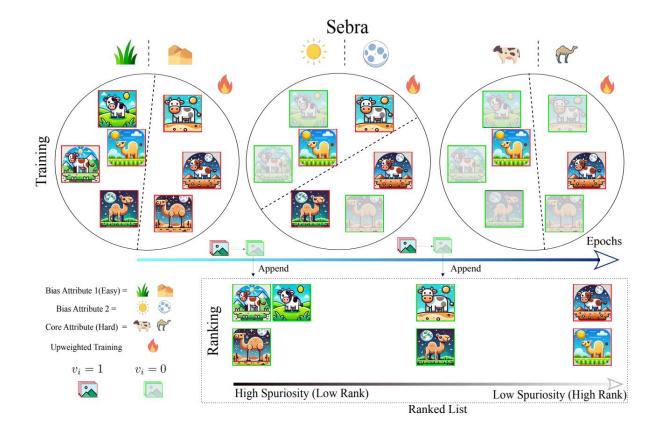
Sequential Learning Based on Levels of Spuriosity

Selection variable ensures isolation among subgroups.

$$\max_{v} \sum_{i=1}^{N} \left\{ \underline{v_i^t} \mathcal{L}_{CE}(f_{\theta}(x_i), y_i) - \underline{\lambda v_i^t} \right\}$$

Sequential Learning Based on Levels of Spuriosity

Reweight CE-Loss by some measure of spuriosity. Vulnerable to shortcut $u_i = 0$, for all u_i s.

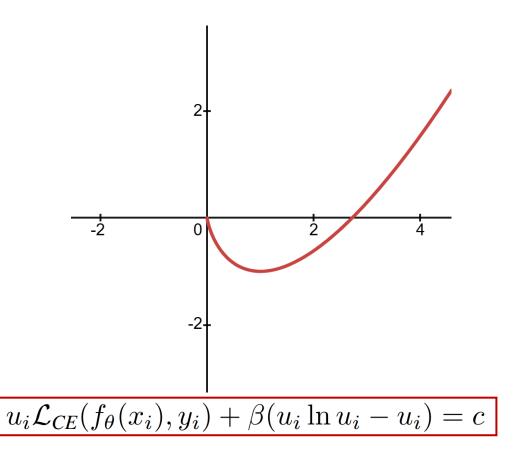


$$\min_{\theta} \min_{u} \sum_{i=1}^{N} \left\{ \underline{u_i} \mathcal{L}_{CE}(f_{\theta}(x_i), y_i) \right\}$$

$$\max_{v} \sum_{i=1}^{N} \left\{ v_i^t \mathcal{L}_{CE}(f_{\theta}(x_i), y_i) - \lambda v_i^t \right\}$$

Hardness-Spuriosity Conservation Law

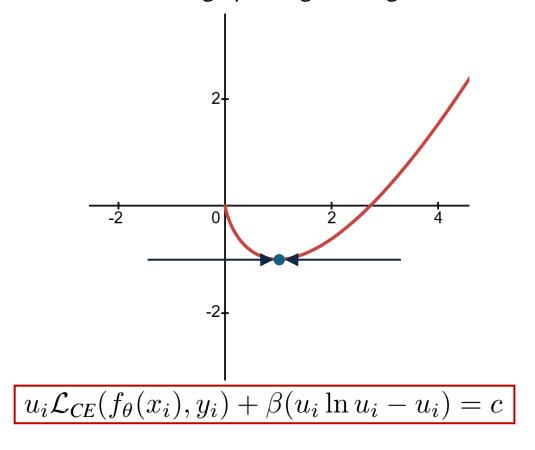
Remedy for collapse: u_i s must belong to a specific manifold satisfying a certain conservation law.



$$\min_{ heta} \min_{u} \sum_{i=1}^{N} \left\{ \underline{u_i} \mathcal{L}_{ ext{CE}}(f_{ heta}(x_i), y_i)
ight\}$$

Hardness-Spuriosity Conservation Law

Remedy for collapse: u_i s must belong to a specific manifold satisfying a certain conservation law. Ensure adherence to manifold through β -weighted regularization.

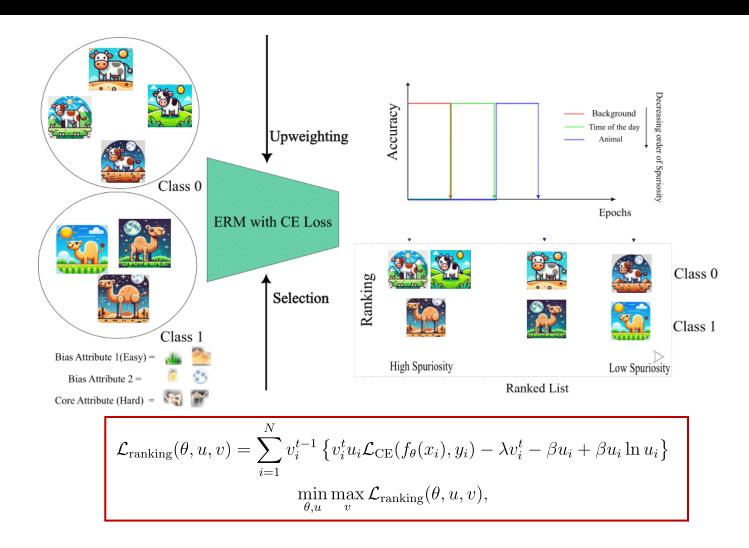


$$\min_{\theta} \min_{u} \sum_{i=1}^{N} \left\{ \underline{u_i} \mathcal{L}_{CE}(f_{\theta}(x_i), y_i) \right\}$$

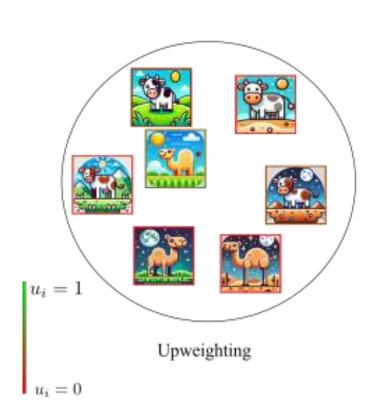
$$g(u_i) = (u_i \ln u_i - u_i)$$

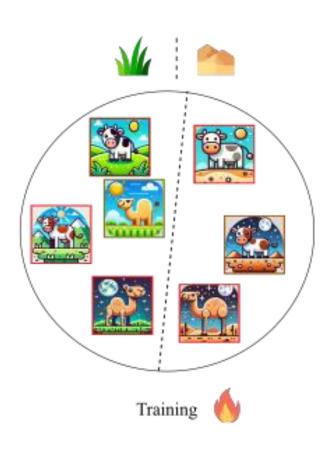
$$\min_{\theta, u} \sum_{i=1}^{N} \left\{ \underline{u_i} \mathcal{L}_{CE}(f_{\theta}(x_i), y_i) + \beta g(\underline{u_i}) \right\}$$

Sebra : Self-Guided Bias Ranking



Sebra: Upweighted Training

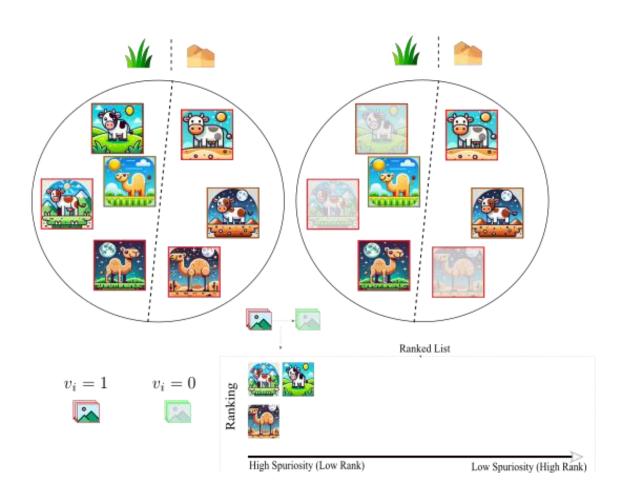




$$\min_{\theta, u} \sum_{i=1}^{N} \left\{ \underline{u_i} \mathcal{L}_{CE}(f_{\theta}(x_i), y_i) + \beta g(\underline{u_i}) \right\}$$

$$u_i^* = p_y^{\frac{1}{\beta}}$$

Sebra: Selection & Ranking



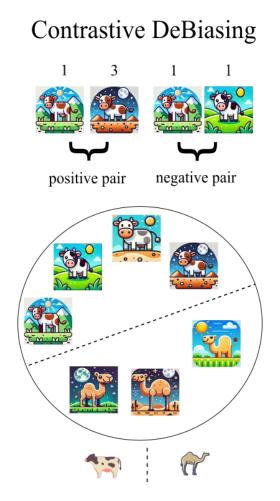
$$\max_{v} \sum_{i=1}^{N} \left\{ \underline{v_i^t \mathcal{L}_{CE}(f_{\theta}(x_i), y_i) - \underline{\lambda v_i^t}} \right\}$$

$$v_i^{t*} = \begin{cases} 0, & \text{if } p_y > p_{critical}, \\ 1, & \text{otherwise.} \end{cases}$$

Sebra: Debiasing

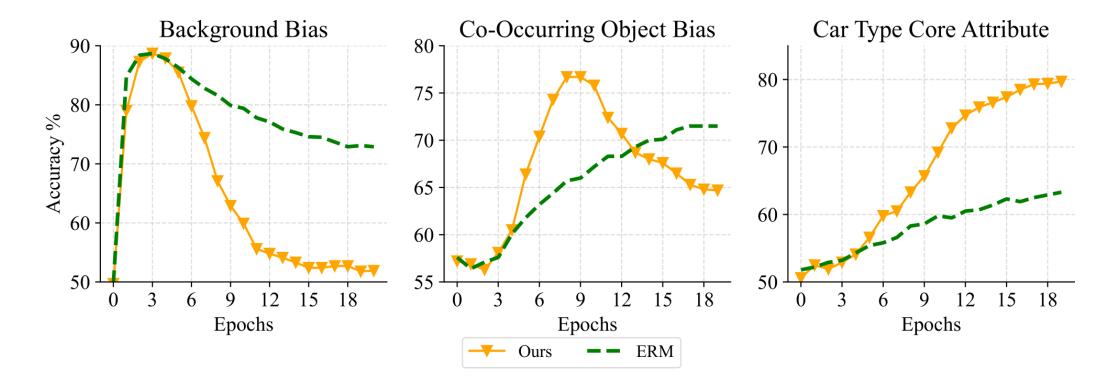
$$\mathcal{L}_{\text{con}}^{\text{sup}}(x; f_{\text{enc}}) = \mathbb{E}\left[-\log\frac{\exp(z^{\top}z_m^+/\tau)}{\sum_{m=1}^{M}\exp(z^{\top}z_m^+/\tau) + \sum_{n=1}^{N}\exp(z^{\top}z_n^-/\tau)}\right],$$

where τ is the temperature coefficent, z_m^+ , z_n^- and z^\top are the embeddings of positive, negative, and reference samples respectively.



Modulation of ERM Dynamics

Sebra successfully mitigates the Whac-a-Mole Dilemma.



Sebra: Ranking Results

Diving

Top Ranked

Bottom Ranked

Pole Vaulting

Top Ranked

Bottom Ranked

Table 1: Quantitative comparison of Sebra with various baselines. The results are shown in terms of Kendall's τ for Urban Cars and CelebA, and Performance Disparity (PD) for BAR.

Method	Urban Cars	CelebA	BAR	
Metric	Kendall's τ (\uparrow)	Kendall's τ (\uparrow)	PD (\uparrow)	
Random Ordering	0.02	-0.01	0.25	
ERM-based Ranking	0.12	0.14	4.55	
Spuriosity Ranking	0.40	0.38	28.88	
Sebra (Ours)	0.85	0.69	32.32	

Sebra: Debiasing Results

Methods	Sup.	UrbanCars			CelebA			BAR
		I.D. Acc. (↑)	WG Acc. (↑)	Avg GAP (†)	I.D. Acc. (↑)	WG Acc. (↑)	Avg GAP (†)	Test Acc. (↑)
Group DRO	✓	91.60 (1.23)	75.70 (1.79)	-10.30 (1.35)	90.08 (0.70)	37.9 (1.6)	-5.79 (1.63)	-
ERM	X	97.60 (0.86)	33.20 (0.86)	-31.90 (3.92)	96.43 (0.13)	36.0 (1.7)	-22.83 (0.84)	68.00 (0.43)
LfF	X	97.20 (2.40)	35.60 (2.40)	-31.06 (3.56)	95.12 (0.35)	35.5 (2.0)	-22.57 (1.26)	68.30 (0.97)
JTT	X	95.80 (1.45)	33.30 (6.90)	-20.50 (2.61)	91.86 (1.48)	38.7 (2.4)	-26.81 (2.53)	68.14 (0.28)
Debian	X	98.00 (0.89)	30.10 (0.89)	-31.40 (1.44)	96.28 (0.37)	41.1 (4.3)	-22.56 (0.54)	69.88 (2.92)
DFR	X	89.70 (1.21)	-	-20.93 (2.61)	60.12 (1.28)	-	-19.16 (3.27)	69.22 (1.25)
Sebra (Ours)	X	92.54 (2.10)	73.8 (3.28)	-10.57 (1.72)	88.61 (3.36)	65.3 (4.1)	-9.82 (3.06)	75.36 (2.23)

Method	Sup.	ImageNet-1K				MultiNLI	
		I.D. Acc. (↑)	IN-W Gap (↑)	IN-9 Gap (↑)	IN-R Gap (†)	Carton Gap (†)	WG. Acc (↑)
LLE	√	76.25	-6.18	-3.82	-54.89	+10	-
ERM	X	76.13	-26.64	-5.53	-55.96	+40	66.8
LfF	X	70.26	-17.57	-8.10	-56.54	+40	63.6
JTT	X	75.64	-15.74	-6.75	-55.70	+32	69.1
Debian	X	74.05	-20.00	-7.29	-56.70	+30	-
Sebra (Ours)	X	74.89	-14.77	-3.15	-54.81	+25	72.3

Thank You

https://kadarsh22.github.io/sebra_iclr25/