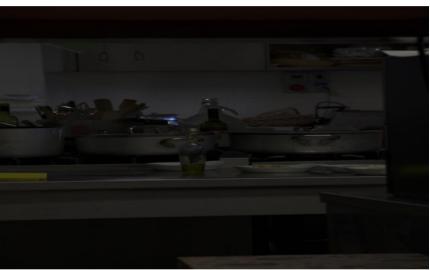


CLODE: Continuous Exposure Learning for Low-light Image Enhancement using Neural ODEs

Donggoo Jung*1, Daehyun Kim*1, Tae Hyun Kim[†]2 Dept. of Artificial Intelligence ¹, Dept. of Computer Science², Hanyang University

Low-light image enhancement

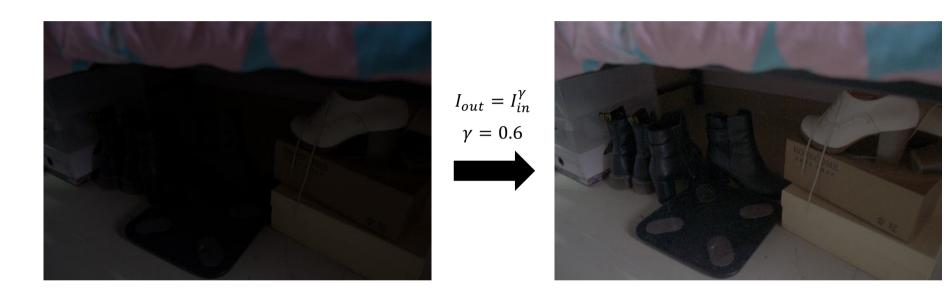


Images captured in low-light condition

Low-light image enhancement

Images captured in well exposed condition

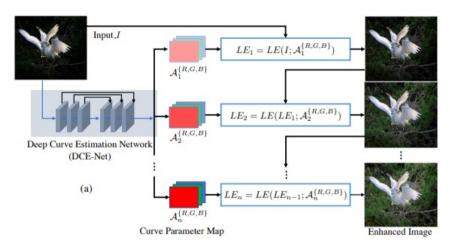
Curve-adjustment method: gamma correction



Gamma correction:

- Overall exposure enhancement
- Cannot consider exposure enhancement locally

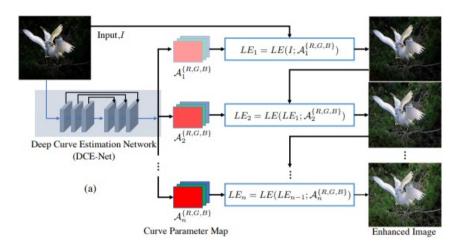
Curve-adjustment method



$$LE(x) = LE(x) + \alpha \cdot (1 - LE(x)) \cdot LE(x)$$
$$0 \le LE(x) \le 1, -1 \le \alpha \le 1$$

- Pixel-wise curve adjustment method
- <u>Iterative method</u> makes higher-order curves for enhancing low-light images
- Detail preservation
- Trained on zero-reference loss functions

Curve-adjustment method

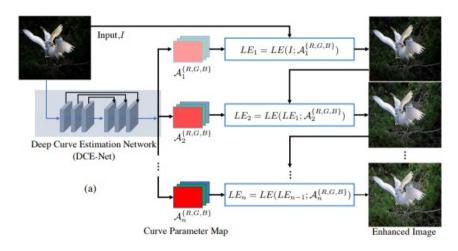


$$LE(x) = LE(x) + \alpha \cdot (1 - LE(x)) \cdot LE(x)$$
$$0 \le LE(x), \le 1, -1 \le \alpha \le 1$$

- Pixel-wise curve adjustment method
- <u>Iterative method</u> makes higher-order curves for enhancing low-light images
- Detail preservation
- Trained on Zero-reference loss functions

- Update process is in discrete-space
- Cannot guarantee convergence of the optimization

Curve-adjustment method



$$LE(x) = LE(x) + \mathcal{A}(x) \cdot (1 - LE(x)) \cdot LE(x)$$
$$0 \le LE(x), \le 1, -1 \le \mathcal{A}(x) \le 1$$

- Pixel-wise curve adjustment method
- <u>Iterative method</u> makes higher-order curves for enhancing low-light images
- Detail preservation
- Trained on Zero-reference loss functions

- Update process is in discrete-space
- Cannot guarantee convergence of the optimization

- Discrete-space update process to continuous-space update process via Neural ODE
- Can find input-specific higher-order curves until convergence

Reformulation

Iterative formulation:

$$I_1 = I_0 + \mathcal{A}_0 \otimes I_0 \otimes (1 - I_0)$$

$$I_2 = I_1 + \mathcal{A}_1 \otimes I_1 \otimes (1 - I_1)$$

$$I_3 = I_2 + \mathcal{A}_2 \otimes I_2 \otimes (1 - I_2)$$

• ...

$$I_N = I_{N-1} + \mathcal{A}_{N-1} \otimes I_{N-1} \otimes (1 - I_{N-1})$$

 \mathcal{A} : Cureve parameter map $(-1 \le \mathcal{A}(x) \le 1)$

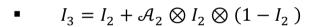
I: Image

Reformulation

Iterative formulation:

$$I_1 = I_0 + \mathcal{A}_0 \otimes I_0 \otimes (1 - I_0)$$

$$I_2 = I_1 + \mathcal{A}_1 \otimes I_1 \otimes (1 - I_1)$$



•
$$I_N = I_{N-1} + \mathcal{A}_{N-1} \otimes I_{N-1} \otimes (1 - I_{N-1})$$

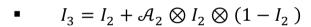
Ordinary Differential Equation:

• $I_{t+1} = I_t + f_{\theta}(I_t, t)$: continuous variable t

Reformulation

Iterative formulation:

$$I_1 = I_0 + \mathcal{A}_0 \otimes I_0 \otimes (1 - I_0)$$



$$I_N = I_{N-1} + \mathcal{A}_{N-1} \otimes I_{N-1} \otimes (1 - I_{N-1})$$

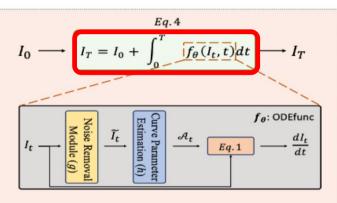
Ordinary Differential Equation:

- $I_{n+1} = I_n + \mathcal{A}_n \otimes I_n \otimes (1 I_n)$: conventional formula
- $I_{t+1} = I_t + f_{\theta}(I_t, t)$: continuous variable t
- $I_T = I_0 + \int_o^T f_\theta(I_t, t) dt$

* ODE solver: Euler, RK4, dopri5, ...

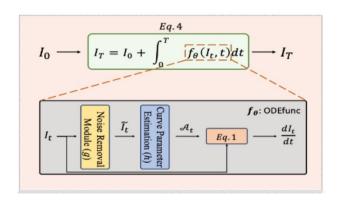
Overall





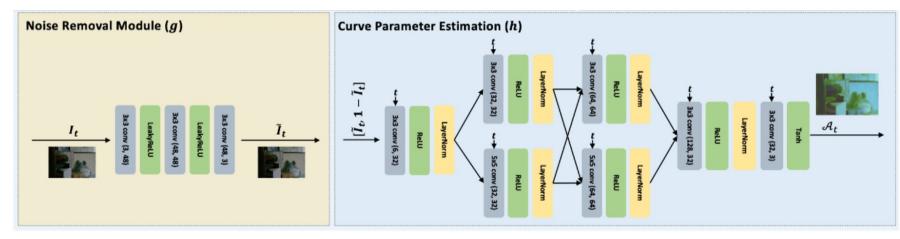
$$(Eq.1) \ \ I_{n+1} = I_n + \mathcal{A}_n \otimes I_n \otimes (1 - I_n)$$

Network overall

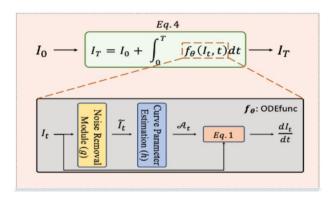


- Noise Removal (g):
 Provide clean input images for Curve Parameter Estimation module
- Curve Parameter Estimation (h):
 Estimate curve parameter map of each state

(Eq. 1)
$$I_{n+1} = I_n + \mathcal{A}_n \otimes I_n \otimes (1 - I_n)$$



Inference



- Inference process:
 - After getting I_T , apply Noise Removal Module (g) for noise free output $\widetilde{I_T}$ $(= g(I_T))$
- User controllable design:
 By changing T, the exposure level of the output image can be easily controlled.

Loss functions

• Spatial Consistency Loss:
$$\mathcal{L}_{spa} = \frac{1}{K} \sum_{i=1}^{K} \sum_{j \in \Omega(i)} (|m_4(I_T)_i - m_4(I_T)_j| - |m_4(I_0)_i - m_4(I_0)_j|)^2.$$

• Color Constancy Loss:
$$\mathcal{L}_{col} = (R - B)^2 + (R - G)^2 + (G - B)^2$$

■ Parameter Regularization Loss:
$$\mathcal{L}_{param} = \sum_t (|\nabla_x \mathcal{A}_t| + |\nabla_y \mathcal{A}_t|)^2$$

• Exposure Loss:
$$\mathcal{L}_{exp} = ||m_{16}(I_T) - E||_2^2$$
. (E = 0.6)

Noise Removal Loss:

Zero shot noise removal loss function from "Zero-Shot Noise2Noise: Efficient Image Denoising without any Data (CVPR2023)" is applied on Noise Removal Module

				LSRW			LOL			Average					
Training	Method	#Params (M)	Train dataset	Norr	mal	GTM	1ean	Nor	mal	GTM	Mean	Nor	mal	GTI	Mean
				PSNR ↑	SSIM [↑]	PSNR↑	SSIM↑	PSNR↑	SSIM↑	PSNR↑	SSIM [↑]	PSNR↑	SSIM↑	PSNR↑	SSIM↑
Supervised	RetinexNet (Chen Wei, 2018)	0.4446	LOL	15.49	0.355	16.55	0.371	16.77	0.419	17.65	0.648	16.13	0.387	17.10	0.510
	URetinexNet (Wu et al., 2022a)	0.3069	LOL, SICE	17.63	0.516	18.10	0.523	19.84	0.826	21.33	0.835	18.74	0.671	19.71	0.679
	DRBN (Yang et al., 2021)	0.5556	LOL	16.15	0.542	17.68	0.548	16.29	0.617	19.55	0.746	16.22	0.580	18.62	0.647
	KinD (Zhang et al., 2019)	8.0160	LOL	16.47	0.493	19.86	0.504	17.65	0.775	20.87	0.802	17.06	0.634	20.36	0.653
	LLFlow (Wang et al., 2022b)	38.859	LOL	17.52	0.509	18.68	0.518	21.15	0.854	24.99	0.871	19.34	0.681	21.84	0.694
	RetinexFormer (Cai et al., 2023)	1.6057	LOL	17.76	0.517	19.15	0.529	25.15	0.845	27.18	0.850	21.45	0.681	23.17	0.690
	SCI-easy (Ma et al., 2022)	0.0003	MIT-5K	11.79	0.317	16.97	0.426	9.58	0.369	18.55	0.501	10.69	0.343	17.76	0.464
	SCI-medium (Ma et al., 2022)	0.0003	LOL, LSRW	15.24	0.424	17.84	0.439	14.78	0.521	19.11	0.504	15.01	0.473	18.47	0.472
	SCI-difficult (Ma et al., 2022)	0.0003	DARKFace	15.16	0.408	18.04	0.424	13.81	0.526	19.64	0.510	14.48	0.467	18.84	0.467
	SCI* (Ma et al., 2022)	0.0003	LOL	14.82	0.413	17.65	0.437	13.84	0.507	19.02	0.499	14.33	0.460	18.34	0.468
Unsupervised	RUAS (Liu et al., 2021)	0.0034	LOL	14.27	0.470	17.10	0.509	16.41	0.500	18.65	0.520	15.34	0.485	17.88	0.514
Unsupervised	ZeroDCE* (Guo et al., 2020)	0.0794	LOL	14.50	0.403	18.87	0.467	16.49	0.522	20.99	0.596	15.50	0.463	19.93	0.532
	ReLLIE (Zhang et al., 2021b)	-	LOL	-1	-	-		18.37	0.641	-	-	-	-	-	-
	PairLIE (Fu et al., 2023)	0.3417	LOL, SICE	16.97	0.498	18.82	0.523	19.51	0.736	23.10	0.752	18.24	0.617	20.96	0.637
	Night-Enhancement (Jin et al., 2022)	67.011	LOL	14.24	0.472	19.19	0.554	21.52	0.763	24.25	0.781	17.88	0.618	21.72	0.668
	CLODE	0.2167	LOL	17.28	0.533	20.60	0.557	19.61	0.718	23.16	0.752	18.44	0.625	21.88	0.655
	CLODE †	0.2167	LOL	20.77	0.562	20.94	0.568	23.58	0.754	24.47	0.759	22.18	0.658	22.71	0.664

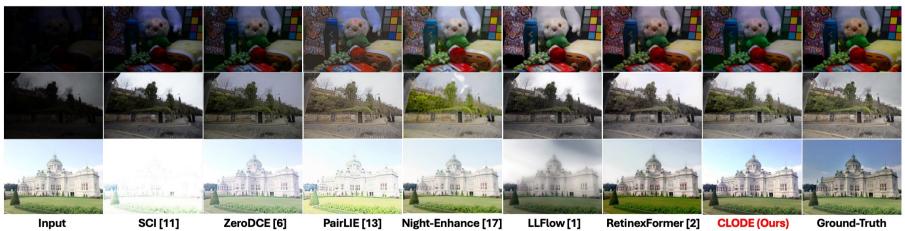


Table 2: Quantitative results on SICE (Cai et al., 2018) Part2. For a fair comparison, we re-trained some models on SICE Part 1 and marked them with *. Within the unsupervised approaches, the best score is displayed in red, the second in blue and the third in black.

Training	Method	Train dataset	Normal						GT Mean		
Training	Method	Train dataset	PSNR↑	SSIM↑	$LPIPS\downarrow$	NIQE↓	BRISQUE↓	$PI\downarrow$	Entropy [↑]	PSNR↑	SSIM [↑]
	URetinexNet (Wu et al., 2022a)	LOL, SICE	12.15	0.708	0.393	4.250	15.633	3.372	6.926	17.81	0.686
Supervised	LLFlow* (Wang et al., 2022b)	SICE	14.34	0.608	0.279	3.643	17.011	3.481	6.566	19.59	0.658
	ECLNet (Huang et al., 2022b)	SICE	13.99	0.562	0.290	4.279	24.570	3.520	6.919	16.66	0.690
	FECNet (Huang et al., 2022a)	SICE	14.25	0.600	0.291	3.786	17.454	3.025	7.035	16.47	0.639
	RetinexFormer* (Cai et al., 2023)	SICE	19.12	0.570	0.369	4.452	24.768	4.573	7.025	20.97	0.578
	RetinexFormer (Cai et al., 2023)	MIT-5K	13.23	0.564	0.263	3.848	17.350	2.863	6.881	16.35	0.609
	SCI-easy (Ma et al., 2022)	MIT-5K	9.87	0.486	0.372	4.276	21.850	3.226	6.113	16.44	0.622
	SCI-medium (Ma et al., 2022)	LOL, LSRW	9.77	0.510	0.454	5.727	33.200	4.392	5.212	15.83	0.574
	SCI-difficult (Ma et al., 2022)	DarkFace	11.13	0.577	0.324	4.636	23.620	3.107	6.386	16.85	0.647
	SCI* (Ma et al., 2022)	SICE	10.67	0.478	0.331	4.289	23.449	3.570	6.213	17.99	0.675
Unsupervised	RUAS* (Liu et al., 2021)	SICE	9.12	0.408	0.539	8.097	52.923	6.004	5.101	15.52	0.531
	ZeroDCE (Guo et al., 2020)	SICE	12.67	0.635	0.244	3.886	21.630	2.821	6.516	18.85	0.686
	PairLIE (Fu et al., 2023)	LOL, SICE	13.39	0.619	0.305	5.268	36.536	3.548	6.376	19.22	0.663
	Night-Enhancement* (Jin et al., 2022)	SICE	13.18	0.581	0.360	4.728	33.883	4.133	6.661	19.43	0.660
	CLODE	SICE	15.01	0.687	0.239	4.050	18.663	3.005	7.006	19.64	0.706
	CLODE†	SICE	16.18	0.707	0.200	4.026	18.210	2.970	7.045	21.55	0.813

Table 3: Quantitative comparisons on LOL (Chen Wei, 2018)/SICE (Cai et al., 2018) dataset.

Method	NIQE↓	BRISQUE↓	color-matching histogram loss↓	$\Delta E_{2000} \downarrow$ (Sharma et al., 2005)	$\Delta E_{ab} \downarrow$ (Sharma & Bala, 2017)
SCI-easy (Ma et al., 2022)	7.15/4.28	12.42/21.85	0.4860/0.4788	31.49/27.00	39.21/35.13
SCI-medium (Ma et al., 2022)	7.86/5.73	25.87/33.20	0.4530/0.4911	19.40/27.28	27.28/35.96
SCI-difficult (Ma et al., 2022)	8.06/4.64	26.82/23.62	0.3854 /0.4872	21.06/24.02	26.09/31.05
RUAS (Liu et al., 2021)	6.30/8.10	11.98/52.92	0.4471/0.5100	16.80/29.18	29.18/38.83
Zero-DCE (Guo et al., 2020)	7.78/ 3.89	27.30/21.63	0.4485/0.4647	21.93/21.26	26.60/27.10
CLODE	4.52 /4.05	8.22/18.66	0.4381/ 0.4606	12.73/17.04	15.71/22.39
CLODE†	4.25/4.03	8.81/18.21	0.3848/0.4462	9.21/14.46	11.86/19.32

Discrete to Continuous

Table 4: Comparative experiments according to using NODE on LSRW (Hai et al., 2023)/LOL (Chen Wei, 2018). The "Discrete" refers to performing curve adjustment in discrete steps, similar to the conventional methods (Guo et al., 2020; Zhang et al., 2021b), and "Continuous" refers to the reformulation of NODE.

Method	Case	Step (N)	PSNR↑	SSIM↑	$BRISQUE \downarrow$
	(a1)	1	11.19/9.236	0.297/0.362	41.137/41.169
Discrete	(b1)	5	16.12/17.47	0.419/0.716	31.421/33.042
Disciele	(c1)	10	13.94/16.18	0.395/0.520	32.267/32.243
	(d1)	20	12.95/14.94	0.373/0.506	33.537/34.941
	(e1)	30	12.87/14.97	0.375/0.509	33.537/35.342
Continuous	(f1)	≤ 30 (adaptive)	17.28/19.61	0.533/0.718	18.426/8.220

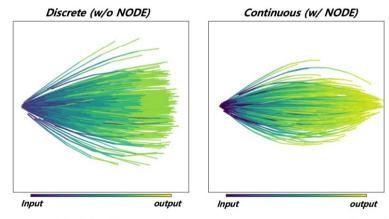
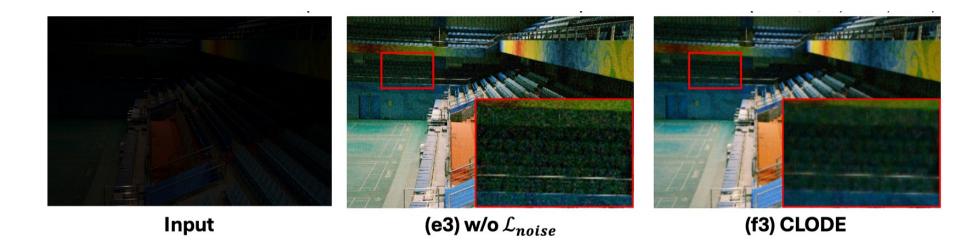


Figure 5: Trajectories of improvement for (e1) and (f1) in Table 4. PCA dimension reduction is used to visualize the trajectories.

Effectiveness of Noise Removal Module



Summary

- Contribution 1: CLODE is the first approach to formulate the higher-order curve estimation problem as a Neural ODE problem, enabling effective and accurate solutions with standard ODE solvers.
- Contribution 2: By transforming the discrete update formula into Neural ODE, which is solvable in continuous space, we significantly enhance the unsupervised low-light image enhancement results.
- Contribution 3: CLODE also offers user controllability without altering the network architecture, enabling users to manually adjust the desired level of exposure as needed.

https://github.com/dgjung0220/CLODE

{dgjung, daehyun, taehyunkim}@hanyang.ac.kr

https://openreview.net/forum?id=Mn2qgIcIPS