Chain-of-region: Visual Language Models Need Details for Diagram Analysis

Summarize the bar values.

xmax 1107, ymax 754)

xmax 1216, ymax 749)

Chain-of-Region Prompt

To proceed, I'll analyze the

relative to the y-axis values

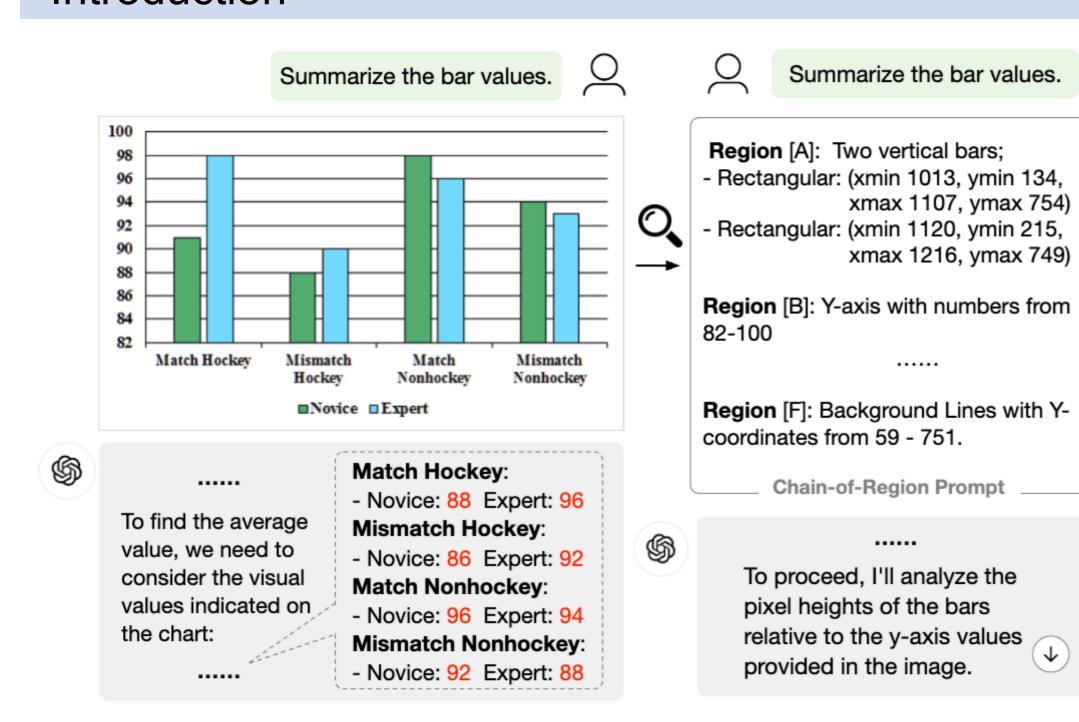
pixel heights of the bars

provided in the image.

Xue Li

Wei Cheng

Yinglun Zhu Haifeng Chen



Paper Link: https://openreview.net/pdf?id=M6fYrICcQs

Introduction

(a) Original VLM fails to capture visual details

Background

Define the y-pixel values corresponding to the y-axis val

return y_axis_max - (y_pixel - y_axis_start)

bars_values = {label: pixel_to_value(y) for label, y in bars

Match Nonhockey:

- Novice: 98 Expert: 96

Mismatch Nonhockey:

- Novice: 94 Expert: 93

y_axis_start = 5

 $y_axis_end = 7$

y_axis_max = 100

bars_pixels = {

Match Hockey:

(b) Augmented VLM with Chain-of-region (CoR) Prompt

Novice: 91 Expert: 98

Novice: 88 Expert: 90

Mismatch Hockey:

- Recent advances in Visual Language Models (VLMs), such as GPT-4V and Gemini, have shown great success in multimodal tasks like Navigation, Search, Scientific QA
- Despite these, critical perceptual limitations remain:
- Struggle with fine visual details
- Misled by visual distractors
- Poor understanding of visual relationships
- Prone to hallucination of non-existent objects

CoR Advantages

- 1. White-box, interpretable steps
- 2. Cost-effective, CPU-only, fast
- 3. Plug-and-play with existing VLMs
- 4. **Outperforms** DL-based methods

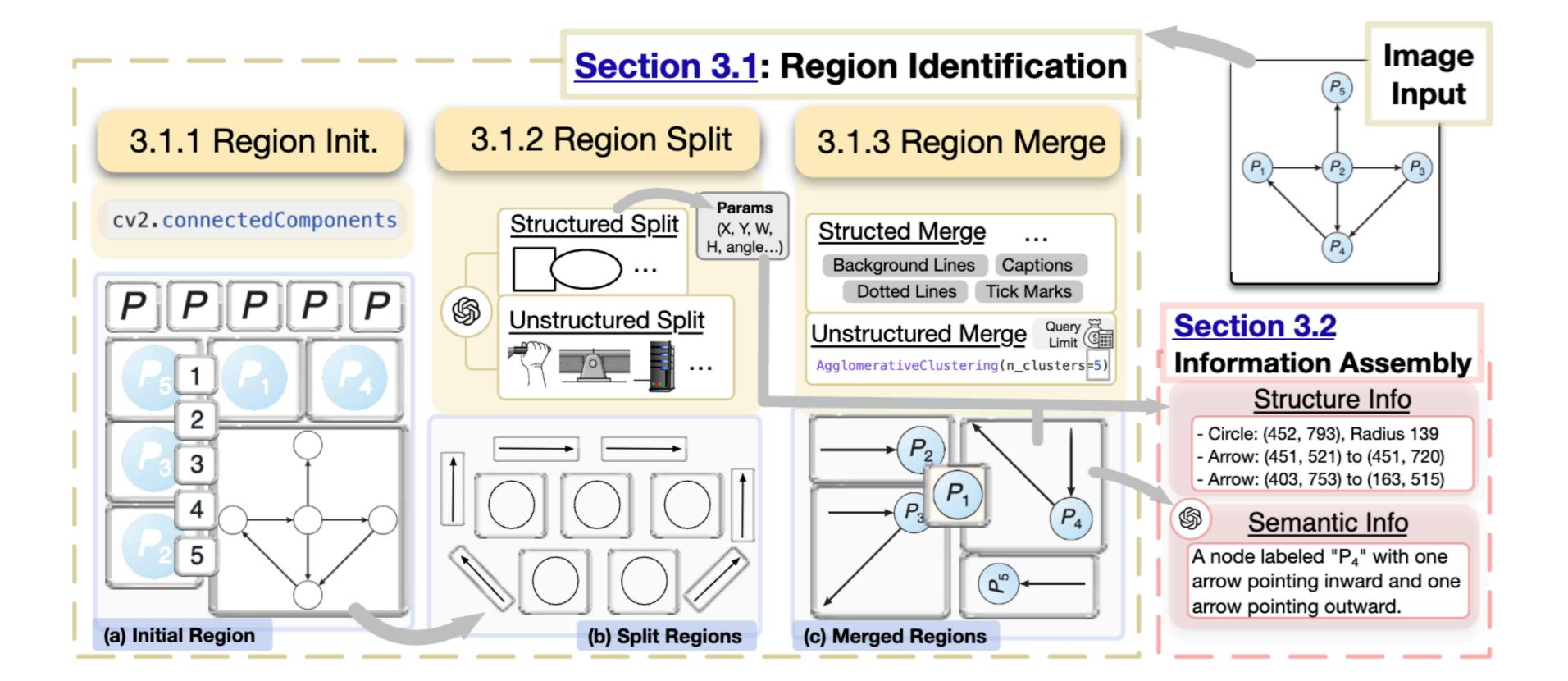

Experiments

Table 1: Main results for QA on scientific diagrams across the MMMU dataset. Bio., Chem., Geo., Arch., CS, Elec., Mater. and ME are short aliases for Biology, Chemistry, Geography, Architecture & Engineering, Computer Science, Electronics, Energy & Power, Materials, and Mechanical Engineering respectively.

Method	Science					Tech and Engineering						Arramaga
	Bio.	Chem.	Geo.	Math	Physics	Arch.	CS	Elec.	Energy	Mater.	ME	Average
GPT4o-mini	40.9	35.5	52.3	47.2	40.0	25.8	33.4	34.6	30.6	42.0	31.9	37.6
+ Zero-shot CoT	38.4	32.6	52.1	38.7	45.7	29.2	35.1	23.1	34.7	42.4	44.4	37.9
+ Few-shot CoT	31.3	37.7	50.9	45.1	42.3	30.4	45.5	31.0	47.5	38.7	35.0	39.6
+ SAM2	38.5	40.0	54.8	52.2	47.9	40.5	34.7	35.3	25.3	45.5	41.9	41.5
+ SoM	31.2	33.6	40.0	43.5	45.1	35.2	27.0	17.9	41.2	34.2	29.9	34.4
+ CoR (Ours)	42.0	34.6	51.8	51.4	52.8	45.1	43.3	33.5	48.7	44.9	51.9	45.4
GPT4-Turbo	41.5	34.8	51.0	41.6	49.9	47.0	57.4	34.6	41.5	45.0	32.5	43.3
+ Zero-shot CoT	43.3	25.1	59.6	46.5	58.3	44.8	50.8	31.3	46.8	31.4	50.0	44.3
+ Few-shot CoT	40.0	37.8	51.8	52.8	52.4	51.6	57.9	47.6	45.2	32.2	51.7	47.4
+ SAM2	38.3	39.9	48.4	63.4	48.0	44.2	50.6	48.6	66.9	37.9	49.3	48.7
+ SoM	41.0	30.3	44.8	47.6	44.0	42.3	37.5	15.1	42.1	26.9	24.7	36.0
+ CoR (Ours)	42.9	43.5	56.0	56.8	61.0	51.9	55.7	52.4	65.2	46.0	57.0	53.5
GPT4o	41.3	33.6	45.4	48.8	51.6	28.8	41.7	24.6	45.1	31.1	22.2	37.7
+ Zero-shot CoT	47.7	46.1	47.4	52.2	66.6	44.3	50.6	29.3	41.5	42.6	47.5	46.9
+ Few-shot CoT	47.8	38.6	58.0	44.9	56.1	51.3	35.2	34.2	41.8	36.5	42.3	44.2
+ SAM2	44.7	42.3	41.5	51.6	64.4	42.0	48.8	38.0	48.9	48.9	45.8	47.0
+ SoM	48.9	37.3	44.7	55.1	49.8	25.9	38.9	28.1	57.5	33.9	24.6	40.4
+ CoR (Ours)	49.8	46.7	59.1	53.9	72.3	49.7	49.9	34.7	65.7	41.0	59.1	52.9

Takeaway: CoT helps improve better performance in multimodal scientific question answering.

Framework Overview

Examples and Comparison with SAM2

K(s+1)s(s+2)(s+3)

 $\frac{s+5}{s+7}$

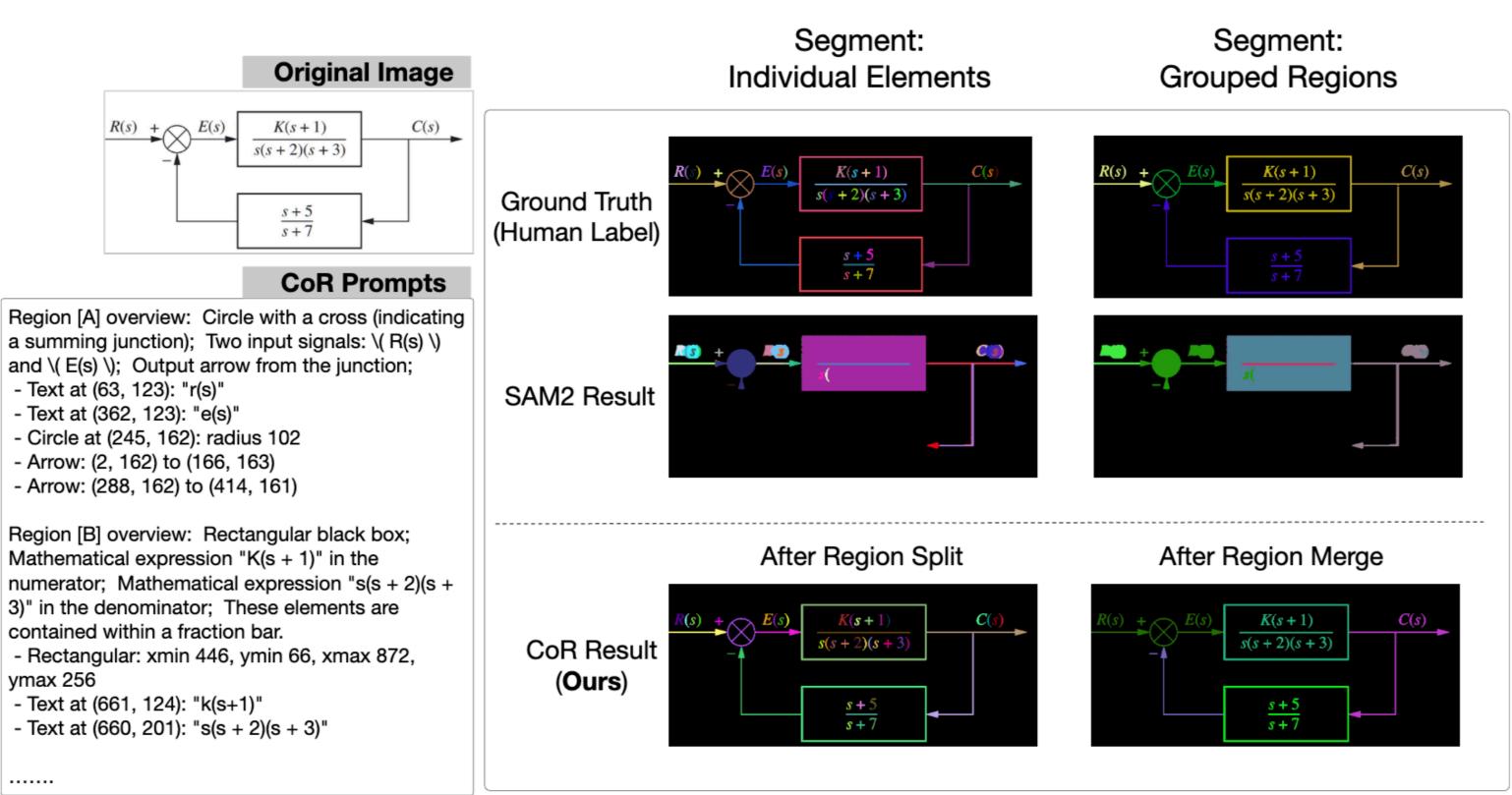
- Text at (63, 123): "r(s)"

- Text at (362, 123): "e(s)"

- Circle at (245, 162): radius 102

- Arrow: (288, 162) to (414, 161)

Mathematical expression "K(s + 1)" in the


- Arrow: (2, 162) to (166, 163)

contained within a fraction bar.

- Text at (661, 124): "k(s+1)"

- Text at (660, 201): "s(s + 2)(s + 3)"

ymax 256

