

On Fourier Analysis in SO(3) Space: The EquiLoPO Network

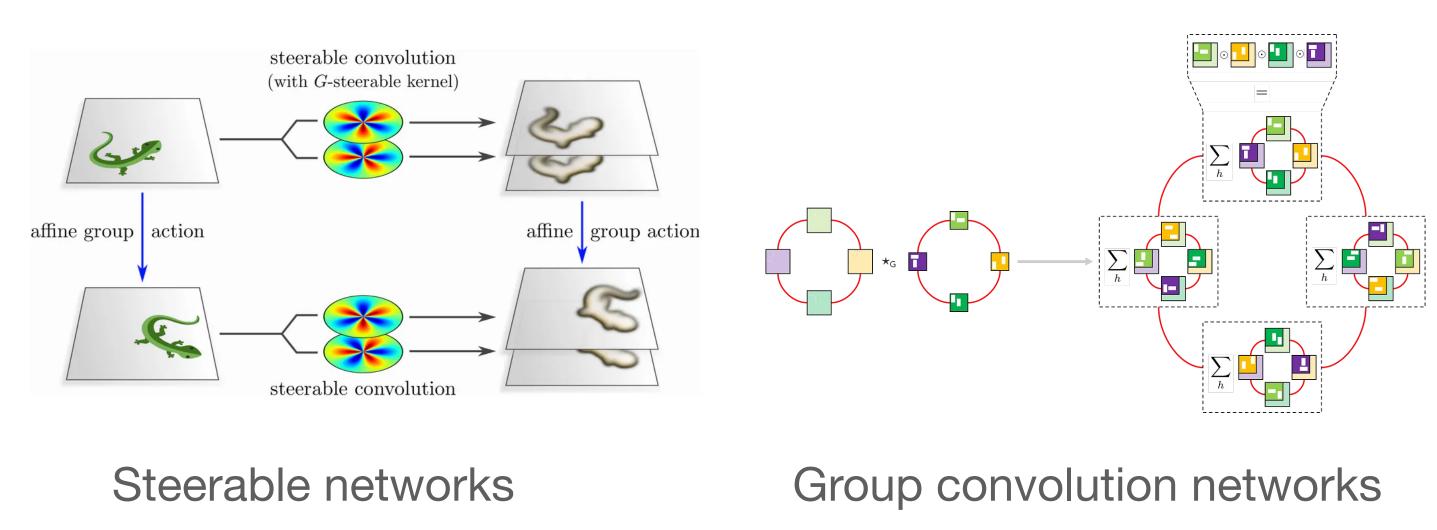
Dmitrii Zhemchuzhnikov^{1,2}, Sergei Grudinin¹
¹Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK
²AIRI

Summary

- •Challenge: Recognition of arbitrary 3D patterns regardless of their orientations
- •Solution: Group convolution in the continuous rotation space using Wigner decomposition
- •Contributions:
 - Convolution operation providing analytical equivariance w.r.t. continuous SO(3)
 - Novel local activation in Fourier that has point-wise effect in real space

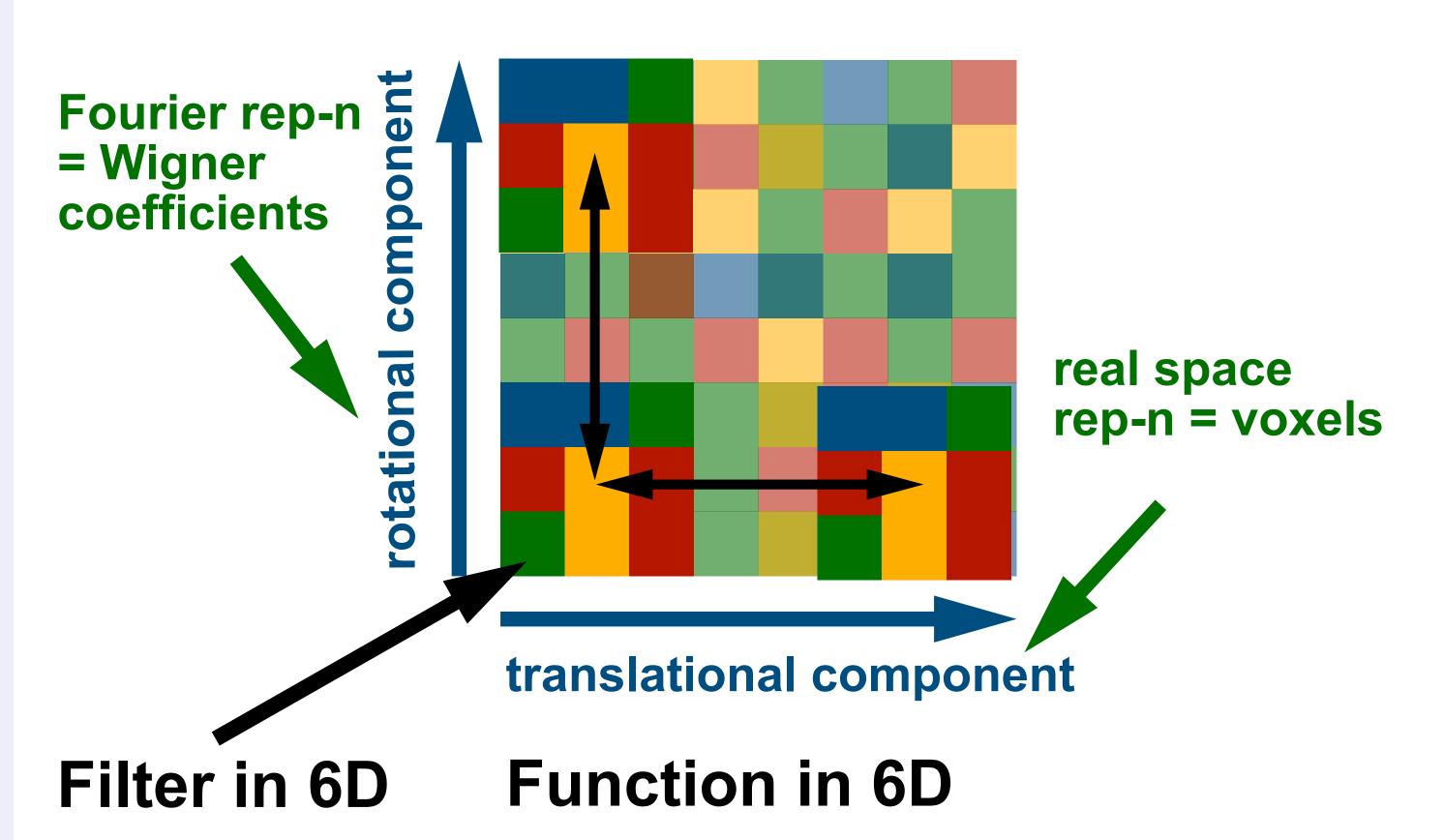
Background

- •Data augmentation is often infeasible in 3D due to 3 angles of rotation.
- Equivariant methods:
- •Steerable networks, which may fail to recognize arbitrarily shaped patterns.
- •Group convolution networks, which lack equivariance to continuous SO(3)



Convolution

Translational component: real space rep-n
Rotational component: Fourier rep-n



Formula:

$$h(\overrightarrow{\Delta}, \mathcal{R}) = \iint d\overrightarrow{r} \ d\mathcal{R}_0 \ f(\overrightarrow{\Delta} + \overrightarrow{r}, \mathcal{R}_0) g(\mathcal{R}^{-1} \overrightarrow{r}, \mathcal{R}^{-1} \mathcal{R}_0)$$

Formula in Fourier space:

$$h_{m_1 m_2}^{l_1}(\overrightarrow{\Delta}) = \int d\overrightarrow{r} \sum_{l_2, m_3, m_4} f_{m_3 m_4}^{l_2}(\overrightarrow{\Delta} + \overrightarrow{r}) S_{m_1 m_2 m_3 m_4}^{l_1 l_2}(\overrightarrow{r})$$

Results

MedMNIST (6 subsets, 28³ voxels)

Method	# of params	Mean AUC	Mean ACC
ResNet-18 +3D	15M	0.86	0.84
ILPONet	38 k	0.89	0.81
EquiLoPONet	418 k	0.94	0.94

Activation

- •Challenge: Propose a Fourier activation that has a local effect in real space
- Solution: polynomial approximation of ReLU

•Advantages: Polynomial approximation

- Close form 0.75
 expression 0.50
 for Fourier 0.25
 space
 - 0.75 0.50 0.00 -1.0 -0.5 0.0 0.5 1.0

1.00 Polynomial approx.

ReLU

Doesn'tlead to

infinite resolution in Fourier space

Ablation study

Method	# of params	Mean AUC	Mean ACC
Local activation	418 k	0.94	0.94
Global (gated) activation	113k	0.68	0.63
Local activation, low resolution	548k	0.69	0.63

