

Yuhang Li (李宇航) Southeast University Nanjing, China

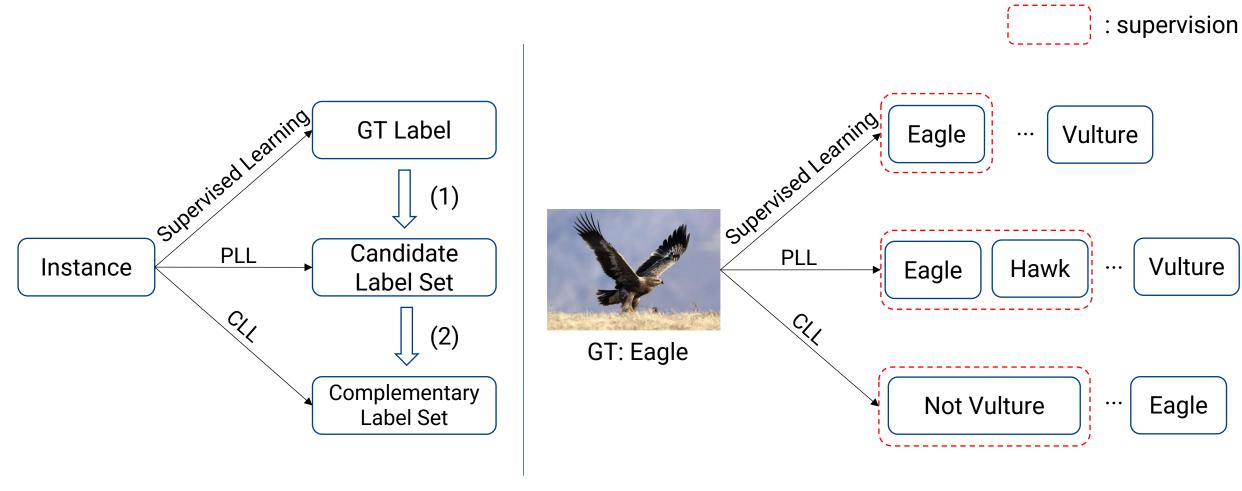
CONTENTS

- 1. Problem Setup
- 2. Methodology
- 3. Experiments
- 4. Future Work

01

Problem Setup

> Imperfect Information: Partial Label Learning & Complementary Label Learning (PLL & CLL)



- (1): Reduce the need of expertise;
- (2): Further reduce the need of expertise; Privacy need.

- > Imperfect Information: Partial Label Learning & Complementary Label Learning (PLL & CLL)
 - Goal: Learn a classifier that can minimize the estimated risk on training set.

Multi-Class Classification

$$\widehat{R}(f) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(f(\boldsymbol{x}), y_i).$$

Complementary Label Learning

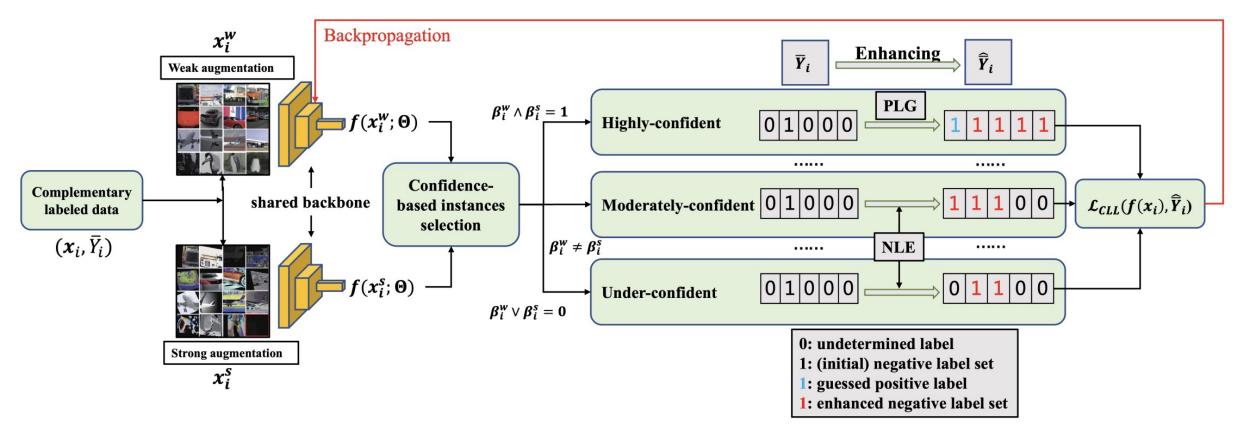
$$\widehat{R}(f) = rac{1}{N} \sum_{i=1}^{N} \bar{\mathcal{L}}_{CLL}(f(\boldsymbol{x}_i), \bar{Y}_i),$$

- Previous Methods
- 1. Design more suitable and solid Loss functions (risk minimizer); Weakness: Static
- 2. Better Representation Learning. Weakness: Training-oriented
- Our Method PLNL (PLG and NLE)
- 1. Status-aware
- 2. Data-oriented
- 3. Theoretical-guaranteed

Methodology

1. How **Status-aware?**

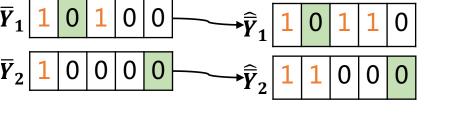
Motivation/Finding: Divide and Conquer (PLG and NLE) based on confidence of the model output.



2. How Data-oriented?

Motivation/Finding: More supervision will bring performance gain.

Number of complementary labels			
2	3	4	5
82.73 ± 1.36	84.16 ± 0.76	86.78 ± 0.87	89.73 ± 0.24
79.30 ± 0.81	82.55 ± 0.87	85.29 ± 1.25	86.20 ± 0.96
86.91 ± 0.35	88.60 ± 0.31	89.58 ± 0.21	90.37 ± 0.19
85.61 ± 0.27	87.03 ± 0.36	89.39 ± 0.21	90.29 ± 0.17
88.90 ± 0.60	92.30 ± 0.78	93.63 ± 0.75	94.53 ± 0.47



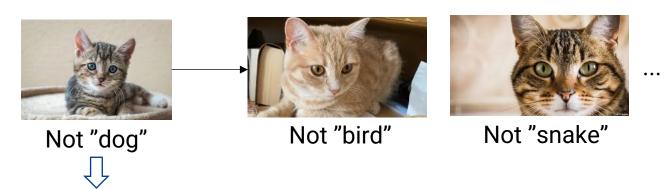
- : Ground-truth label
- 1 : Complementary label
- **0**: Undetermined label

2. How **Data-oriented?**

Method: Enhancing the negative supervision (NLE) via instances' nearest neighbors in feature space.

Complementary Label Sharing Mechanism

Assumption 1. $\forall (x_i, \bar{Y}_i) \in \mathcal{D}$ and its k-NN instances $(x_i^{(j)}, \bar{Y}_i^{(j)})$, the positive label y_i exists in its k-NN instances' complementary label set $\bar{Y}_i^{(j)}$ with probability no more than α_k , any negative label $y_i' \neq y_i$ exist in its k-NN instances' complementary label set $\bar{Y}_i^{(j)}$ with probability no less than β_k .



Not "dog, bird, snake"

2. How **Data-oriented?**

Method: Enhancing the negative supervision (NLE) via instances' nearest neighbors in feature space.

Complementary Label Sharing Mechanism

Assumption 1. $\forall (x_i, \bar{Y}_i) \in \mathcal{D}$ and its k-NN instances $(x_i^{(j)}, \bar{Y}_i^{(j)})$, the positive label y_i exists in its k-NN instances' complementary label set $\bar{Y}_i^{(j)}$ with probability no more than α_k , any negative label $y_i' \neq y_i$ exist in its k-NN instances' complementary label set $\bar{Y}_i^{(j)}$ with probability no less than β_k .

k-NN Label Frequency

$$\boldsymbol{F}_{ij} = \sum_{v=1}^{k} \mathbb{I}(j \in \bar{Y}_i^{(v)}),$$

Enhanced Complementary Label Set

$$\widehat{\bar{Y}}_i = \{c | c \in \bar{Y}_i \lor c \in \text{top-}\tau_i\text{-max}_{j \in Y_i}(F_{ij})\}.$$

2. How Data-oriented?

Method: Enhancing the negative supervision via instances' nearest neighbors in feature space.

$$oldsymbol{F}_{ij} = \sum
olimits_{v=1}^k \mathbb{I}(j \in \bar{Y}_i^{(v)}),$$

Enhanced Complementary Label Set

$$\widehat{\bar{Y}}_i = \{c | c \in \bar{Y}_i \lor c \in \text{top-}\tau_i\text{-max}_{j \in Y_i}(\mathbf{F}_{ij})\}.$$

The cooperation with Vision Language Models

Feature Extractor	CIFAR-10, SCLL Accuracy $\mid 1 - \epsilon_2$	$ $ CIFAR-100, MCLL Accuracy $ $ $1 - \epsilon_2$
MoCo	93.12% 95.64%	61.82% 75.34%
BLIP-2	95.84% 99.91%	69.85% 93.34%
PreActResNet-18	94.78% 97.79%	64.33% 80.84%

3. How Theoretical-guaranteed?

Motivation/Finding: Bounded PLG/NLE errors, bounded generalization error under mild assumption.

PLG error bound

$$\epsilon_1 = \mathbb{P}(y_i \in \widehat{\bar{Y}}_i) \le \psi(\boldsymbol{X}, \overline{\boldsymbol{Y}})^{(K-1-s_i)},$$

NLE error bound

$$\epsilon_2 = \mathbb{P}(y_i \in \widehat{\bar{Y}}_i) \le \sum_{j=1}^k \binom{|Y_i|-1}{|Y_i|-\tau_i} I_{\beta_k} (k-j+1,j)^{(|Y_i|-\tau_i)} b_{\alpha_k}(k,j),$$

Generalization bound

$$R(\hat{f}) - R(f^*) \le 2(1 - \frac{1 - \epsilon}{K - \bar{s}})B + 4\rho K \Re_N(\mathcal{F}) + 2KB\sqrt{\frac{\log \frac{2}{\delta}}{2N}}.$$

The first to prove the upper bound for Complementary Label Learning with Pseudo Label Noise. 12

Main Results

Table 1: Comparison of classification accuracies between different methods on four datasets with a single complementary label per instance. The results (mean \pm std) are reported over 3 random trials. The best results are highlighted in bold (The same applies hereinafter).

Method	STL-10	SVHN	FMNIST	CIFAR-10
UB-EXP	28.84±0.54%	88.93±0.17%	87.96±0.08%	62.90±0.06%
UB-LOG	20.41±0.46%	89.59±0.08%	87.59±0.14%	70.28±0.12%
SCL-EXP	31.03±0.61%	88.66±0.20%	88.31±0.09%	72.35±0.10%
SCL-LOG	30.74±0.72%	89.26±0.24%	88.03±0.10%	79.87±0.14%
POCR	34.96±0.32%	96.65±0.14%	92.29±0.07%	94.15±0.09%
SELF-CL	30.87±0.72%	90.13±0.23%	84.86±0.10%	88.95±0.22%
ComCo	32.43±0.28%	91.41±0.35%	85.42±0.40%	89.36±0.76%
Ours	55.25±0.36%	97.58±0.18%	93.38±0.06%	94.78±0.12%

Table 2: Comparison of classification accuracies between different methods on five datasets with multiple complementary labels per instance. The results (mean \pm std) are reported over 3 random trials.

Method STL-10	SVHN FMNIST	CIFAR-10	CIFAR-100
UB-EXP 60.85±0.12%	95.23±0.09% 92.34±0.289	% 91.13±0.23%	$34.43 \pm 0.08\%$
UB-LOG 62.84±0.17%	94.76±0.07% 91.84±0.299	% 92.01±0.21%	$52.76 \pm 0.15\%$
SCL-EXP 62.96±0.10%	95.28±0.14% 92.20±0.279	% 91.85±0.25%	47.81±0.09%
SCL-LOG 61.60±0.14%	94.88±0.16% 91.51±0.259	% 92.67±0.18%	49.40±0.19%
POCR 74.51±0.29%	97.14±0.09% 94.76±0.269	% 96.09±0.27%	$53.16 \pm 0.11\%$
SELF-CL 69.85±0.20%	91.58±0.30% 94.92±0.219	% 92.23±0.16%	57.65±0.25%
ComCo 73.28±0.19%	95.41±0.23% 92.01±0.169	% 91.38±0.73%	57.88±0.95%
Ours 77.11±0.14%	98.13±0.11% 95.16±0.139	% 96.80 ± 0.28 %	64.33±0.43%

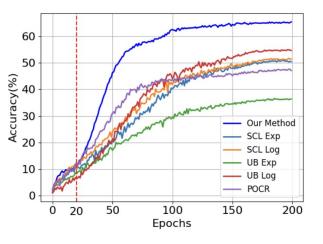
Ablation Study

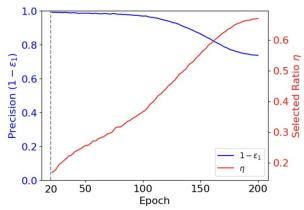
Table 4: Classification accuracy of degenerated methods on three settings.

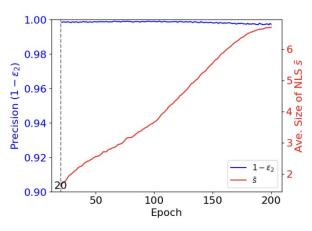
Method	STL-10 SCLL	CIFAR-10 SCLL	CIFAR-100 MCLL
PLNL	55.25	94.78	64.33
PLNL v1	49.25	93.75	63.09
PLNL v2	49.82	92.01	58.94
PLNL v3	53.22	94.28	63.14
POCR	34.96	94.15	53.16

All components are indispensible.

Further Analysis



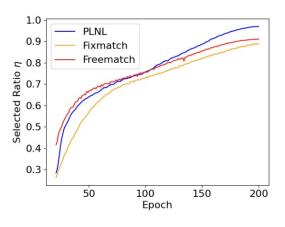


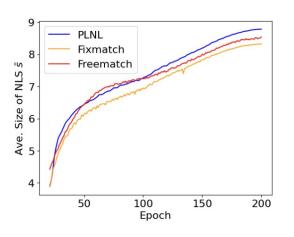


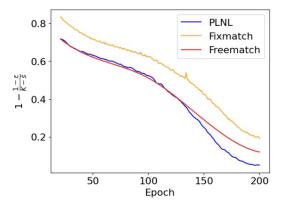
(a) Accuracy Comparison of CLL methods

(b) PLG Precision vs. Selected Ratio

(c) NLE Precision vs. Ave. Num. of NLS







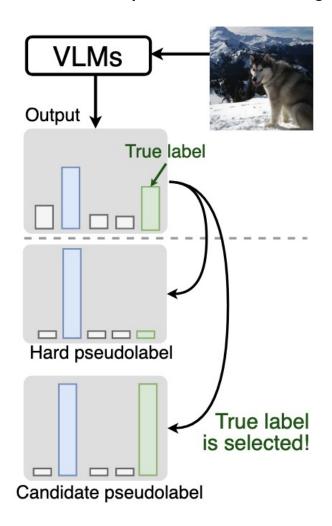
(a) Selected Ratio vs. Epoch

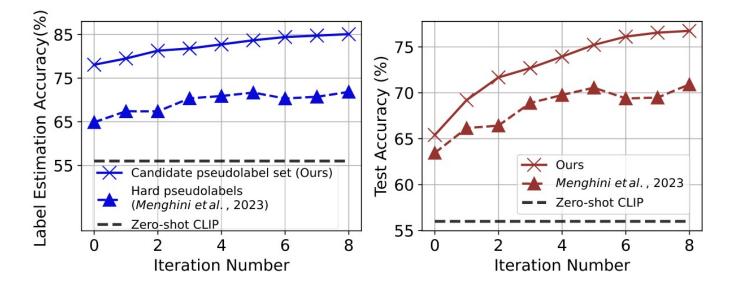
(b) Ave. Num. of NLS vs. Epoch

(c) Convergence of $(1 - \frac{1-\epsilon}{K-\bar{s}})$

Future Work

- > The cooperation with Language Models : Weakly-Supervised Learning
 - A New Perspective to Leverage Unlabeled Data





Thanks!

Yuhang Li (李宇航) Southeast University Nanjing, China