

To Tackle Adversarial Transferability: A Novel Ensemble Training Method with Fourier Transformation

Authors: Wanlin Zhang, Weichen Lin, Ruomin Huang, Shihong Song, Hu Ding

Affiliations: School of Computer Science and Technology, University of Science and Technology of China

Conference: ICLR 2025

Outline

- Research Background & Motivation
- Overview of the Proposed Method
 - Definition of feature extractor
 - □ Fine-grained analysis on ensemble model vulnerability
 - Frequency domain transformation
- **■** Experimental Results
- □ Conclusion & Future Work

Research Background & Motivation

■ Adversarial examples severely impedes the application of DNNs in security-conscious scenarios, such as self-driving car[1], Face recognition[2] and heath care[3].

^[1] Shetuwang. (2025, March 17). [self-driving] [lmage]. Qianzhan. https://t.qianzhan.com/caijing/detail/250317-9ba77063.html

^[2] Huawei. (n.d.). [heath care] [lmage], from https://e.huawei.com/cn/industries/healthcare

^[3] vMaker Editorial Team. (2020, September 27). [Face recognition] [Image], from https://vmaker.tw/archives/47170

Research Background & Motivation

■ Adversarial training approaches often suffer from high training time and a decline in accuracy on clean data.

- Ensemble training methods struggle to prevent the transferability of adversarial examples among sub-models.
- Data transformation-based approaches often rely on a private key. If the private key is lost, the model becomes vulnerable

Overview of the Proposed Method

■ Definition of feature extractor

- Fine-grained analysis on ensemble model vulnerability
- Frequency domain transformation

Definition of Feature Extractor

□ Useful feature extractor & Robust and non-robust feature extractor.

Definition 1 (Useful feature extractor)

For a given data distribution $\mathbb{D} = \mathbb{X} \times \mathbb{Y}$, a feature extractor $\theta \colon \mathbb{X} \to \mathbb{R}^k$ is **useful**, if we have $\mathbb{E}_{(x,y) \sim \mathbb{D}}[h(y)^T \theta(x)] > 1/k$,

Where h(y) is the one-hot k-dimensional vector of the label y, k is the number of classes.

Definition 2 (Robust and non-robust feature extractor)

- (1) We say θ is **robust** if the following condition holds for any i $(1 \le i \le k)$: $\mathbb{E}_{(x,y) \sim \mathbb{D}_i} [\theta(A(x))]_i > 1/k$. where \mathbb{D}_i represents the i-th class data and A(x) denotes the adversarial example of a data item x. We denote the set of these robust feature extractors as Θ_R .
- (2) The remaining useful feature extractors are **non-robust**. We assign these non-robust extractors to k(k-1) sets: $\{\Theta_{i,j} | 1 \le i \ne j \le k\}$ as follows: For each non-robust θ , there must exist at least an index "i" such that $\mathbb{E}_{(x,y)\sim\mathbb{D}_i}[\theta(A(x))]_i \le 1/k$. We let $j = argmax_s \mathbb{E}_{(x,y)\sim\mathbb{D}_i}[\theta(A(x))]_s$ and assign θ to $\Theta_{i,j}$.

we can represent the model as:

$$f(x) = \sum_{\theta \in \Theta_R \cap \Theta_f} w_{\theta} \theta(x) + \sum_{i,j=1, i \neq j} \sum_{\theta \in \Theta_{i,j} \cap \Theta_f} w_{\theta} \theta(x)$$
 (1)

Fine-grained Analysis on Ensemble Model Vulnerability

$$Vr(F_{E}) = \mathbb{E}_{(x,y)\sim\mathcal{D}} \Big[\mathbb{I} \big\{ F_{E}(x) = y \land F_{E}(\mathcal{A}(x)) \neq y \big\} \Big]$$
$$Vr(F_{E}, y_{t}) = \mathbb{E}_{(x,y)\sim\mathcal{D}} \Big[\mathbb{I} \big\{ F_{E}(x) = y \land F_{E}(\mathcal{A}(x)) = y_{t} \big\} \Big]$$

■ We have the inequalities.

$$\operatorname{Vr}(F_{\mathrm{E}}) \le \sum_{y_t \in \mathcal{Y}} \operatorname{Vr}(F_{\mathrm{E}}, y_t)$$
 (2)

$$\operatorname{Vr}(F_{\mathrm{E}}, y_{t}) \leq \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\mathbb{I}\left(\sum_{m=1}^{M} \mathbb{I}\left([f_{m}(\mathcal{A}(x))]_{y} < [f_{m}(\mathcal{A}(x))]_{y_{t}}\right) > \frac{M}{k}\right) \right]$$
(3)

To reduce the upper bound of $V_r(F_E)$, we decrease the right hand side of the inequality (2) which is equivalent to reducing the probability of the following expression holding.

$$\left[\sum_{\theta\in\Theta_{R}^{m}} w_{\theta}\theta(\mathcal{A}(x)) + \sum_{i,j=1,i\neq j}^{k} \sum_{\theta\in\Theta_{i,j}^{m}} w_{\theta}\theta(\mathcal{A}(x))\right]_{y} < \left[\sum_{\theta\in\Theta_{R}^{m}} w_{\theta}\theta(\mathcal{A}(x)) + \sum_{i,j=1,i\neq j}^{k} \sum_{\theta\in\Theta_{i,j}^{m}} w_{\theta}\theta(\mathcal{A}(x))\right]_{y_{t}}$$
(4)

Fine-grained Analysis on Ensemble Model Vulnerability

 \Box *Hint(i):* To decrease the vulnerability in the attack direction y_t , it is reasonable to decrease the influence from the non-robust feature extractors of Θ_{y,y_t}^m .

■ *Hint (ii):* For each attack direction y_t , we only need to consider manipulating the training data of M/2 + 1 sub-models instead of all the M sub-models.

Frequency Domain Transformation

■ Frequency selection.

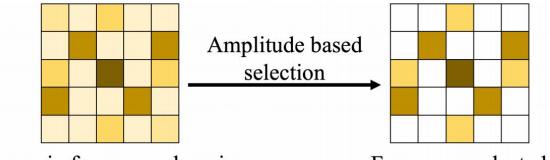


Image in frequency domain

Frequency selected

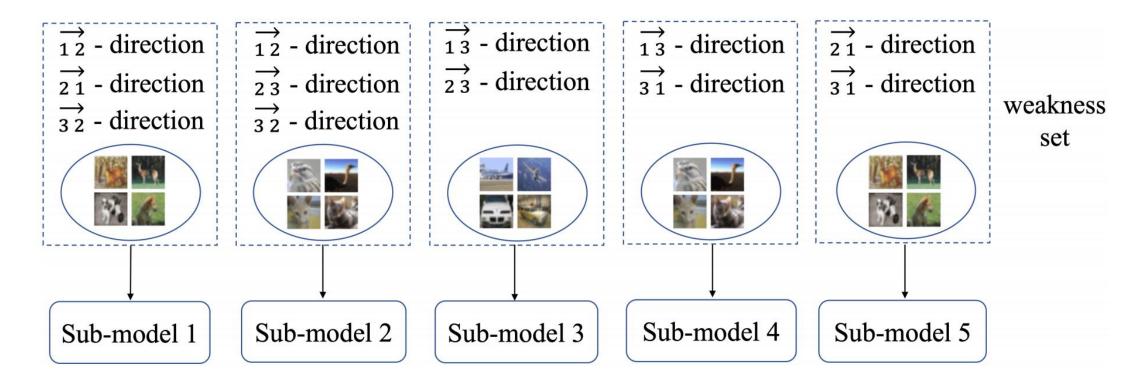
■ In our Frequency selection, we retain the high-amplitude frequencies (i.e., the darker regions) and perform data transformations on the low-amplitude frequencies (i.e., the white regions)

■ Frequency transformation

■ We use adversarial attacks to manipulate non-robust features.

Frequency Domain Transformation

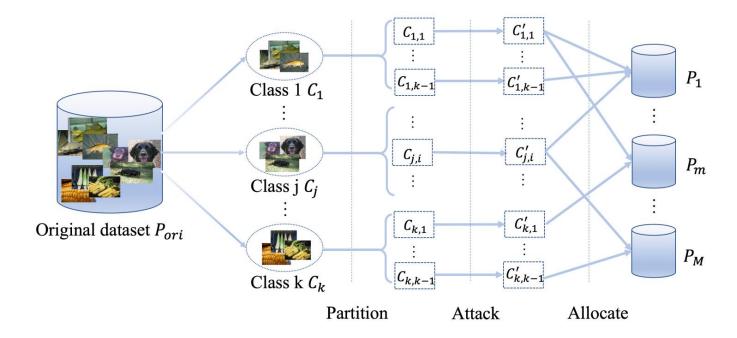
■ Allocating the weakness sets to the sub-models



■ Assign the attack directions to five sub-models for a three-class classification task.

Frequency Domain Transformation

Constructing the new datasets.



■ Constructing the new datasets according to the allocation scheme and train the submodels on the new datasets.

Experimental Results

- □ Datasets: Cifar10, Cifar100, SVHN, Tiny-ImageNet-200
- □ Architectures: ResNet20, ResNet50, WRN28-10, WRN34-10
- Comparisons: We compare our method with ADP, GAL, DVERGE, TRS.

■ Results:

- Better robust accuracy and clean accuracy.
- Better trade-off curve, especially in terms of clean accuracy
- □ Generalize to larger architectures (e.g., ResNet50, WRN34-10).

Experimental Results

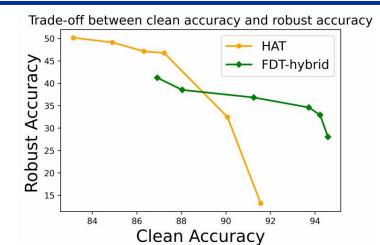
Table 2: Robust and Clean Accuracy (%) and average training time of different ensemble methods against white-box attacks on CIFAR-10 and CIFAR-100. " ϵ " and " λ " stand for the l_{∞} norm of the adversarial perturbation and the coefficient of C&W attack respectively. The TRS results are reported in the original paper Yang et al. (2021), with "-" indicating results not provided.

CIFAR-10	ADP	GAL	DVERGE	TRS	FDT-random	FDT-target	FDT-hybrid
Clean accuracy	91.84	91.81	91.37	=	89.88 ± 0.02	90.16 ± 0.04	90.20 ± 0.03
FGSM (ϵ =0.01)	59.48	44.97	70.05	<u>==</u> 0	66.96 ± 0.12	72.88 \pm 0.12	72.24 ± 0.12
FGSM (ϵ =0.02)	53.38	30.58	56.33	44.2	46.28 ± 0.10	55.54 ± 0.09	58.04 ± 0.13
PGD (ϵ = 0.01)	14.45	1.35	40.55	50.5	45.42 ± 0.09	46.58 ± 0.07	48.48 ± 0.09
$PGD (\epsilon = 0.02)$	2.95	0.34	11.49	15.1	12.24 ± 0.03	15.08 ± 0.05	20.01 ± 0.04
BIM (ϵ = 0.01)	14.15	1.37	40.51	50.6	45.24 ± 0.03	46.86 ± 0.04	48.57 ± 0.05
BIM ($\epsilon = 0.02$)	3.01	0.27	10.65	15.8	11.68 ± 0.03	14.86 ± 0.03	16.63 ± 0.02
$\overline{\text{MIM}} \ (\epsilon = 0.01)$	20.38	2.05	44.74	51.5	47.73 ± 0.05	49.97 ± 0.06	51.50 ± 0.07
MIM (ϵ = 0.02)	5.11	0.69	14.76	17.2	15.14 ± 0.04	18.27 ± 0.02	20.09 ± 0.03
AA (ϵ = 0.01)	1.80	0.00	43.34	-	46.09 ± 0.09	48.83 ± 0.08	51.56 ± 0.08
AA (ϵ = 0.02)	0.00	0.00	13.72	## ### 	9.38 ± 0.05	15.70 ± 0.05	19.42 ± 0.04
$C\&W (\lambda = 0.1)$	20.96	31.57	52.35	58.1	45.01 ± 0.10	55.48 ± 0.10	56.08 ± 0.11

Experimental Results

Table 7: Robust Accuracy (%) of different model architectures against white-box attacks on Cifar10. The ϵ and λ stand for the l_{∞} norm of the adversarial perturbation and the coefficient of C&W attack respectively.

CIFAR10	ResNet20	ResNet50	WRN28-10	WRN34-10
clean accuracy	90.02	93.23	94.18	94.63
FGSM ($\epsilon = 0.01$)	72.24	76.65	80.64	81.04
FGSM ($\epsilon = 0.02$)	58.04	58.59	60.09	60.92
$\overline{PGD (\epsilon = 0.01)}$	48.48	60.23	64.64	65.38
$PGD (\epsilon = 0.02)$	20.01	24.35	26.00	27.42
$BIM (\epsilon = 0.01)$	48.57	60.43	67.36	68.29
BIM ($\epsilon = 0.02$)	16.63	23.57	32.36	33.86
$\overline{\text{MIM} (\epsilon = 0.01)}$	51.48	60.81	64.36	64.71
$MIN (\epsilon = 0.02)$	20.09	24.54	25.64	26.42
$AA (\epsilon = 0.01)$	51.56	60.48	63.45	64.01
$AA (\epsilon = 0.02)$	19.42	24.21	25.23	26.39
$CW (\lambda = 0.01)$	56.08	56.55	57.23	57.52



□ Conclusion:

- We present a novel data transformation approach to improve the robustness of ensemble models against adversarial attacks
- We demonstrate the effectiveness of our method in enhancing adversarial robustness while maintaining high accuracy on clean data

□ Future Work:

- □ Other types of transformation methods to improve the ensemble robustness
- Consider more complicated scenarios for ensemble training