

Scaling Large Language Model-Based Multi-Agent Collaboration

Qian C, Xie Z, et al.

Tsinghua University & Peng Cheng Laboratory

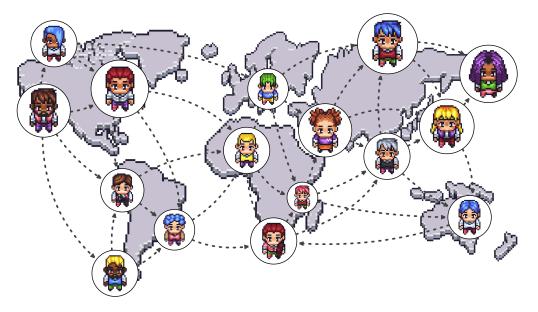
Contents

- Introduction
- Methodology
- Evaluation
- Conclusion

Introduction

LLM-Powered Multi-Agent Collaboration

Single Agent: Context Explosion & Lack of Diversity


 Multi-Agent Collaboration: facilitated by interactive behaviors, often surpasses standalone intelligence

Emergent Abilities: ① Nature: sardine schools, ant swarms
 ② large language models

Scaling the number of agents in Multi-Agent Systems
 (MAS) -> Emergent behaviors? Collaborative Scaling Law?

Multi-Agent Collaboration

Introduction

LLM-Powered Multi-Agent Collaboration

Single Agent: Context Explosion & Enclosed Reasoning

Multi-Agent Collaboration: facilitated by interactive behaviors, often surpasses standalone intelligence

Emergent Abilities: ① Nature: sardine schools, ant swarms ② large language models

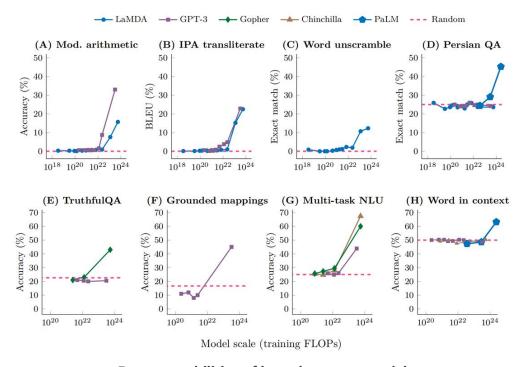
Scaling the number of agents in Multi-Agent Systems (MAS) -> Emergent behaviors? Collaborative Scaling Law?

Emergent behavior of sardine schools

Introduction

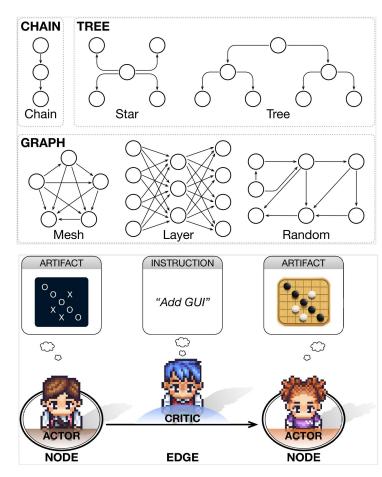
LLM-Powered Multi-Agent Collaboration

Single Agent: Context Explosion & Enclosed Reasoning

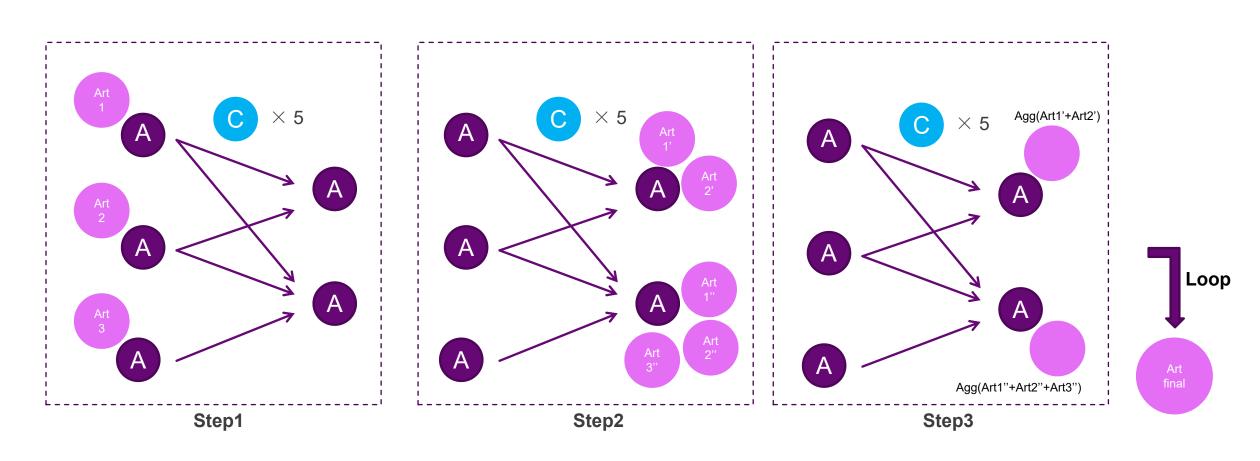

Multi-Agent Collaboration: facilitated by interactive behaviors, often surpasses standalone intelligence

Emergent Abilities: ① Nature: sardine schools, ant swarms ② large language models

Scaling the number of agents in Multi-Agent Systems (MAS) -> Emergent behaviors? Collaborative Scaling Law?


Emergent abilities of large language models

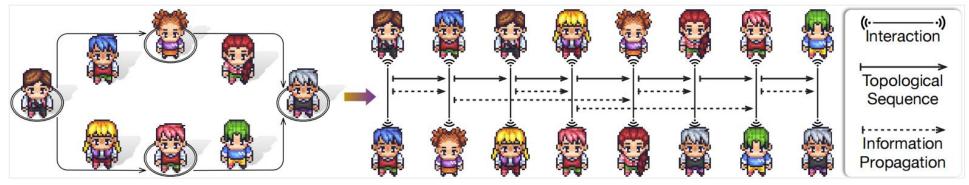
Methodology


Network Construction

- Describe agents and their interrelations as a directed acyclic graph (DAG) - prevents backflow and enhances generalizability
- Agentization: structurally assign a critic to each edge and an actor to each node
- The actor's outputs (artifacts) are **refined** under the critic's instructions, eventually **aggregated** into one artifact - information propagation

Methodology

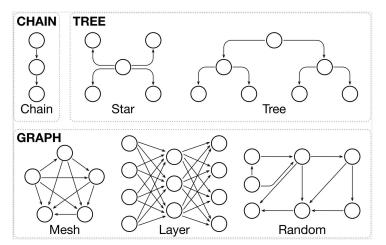
Qian C, Xie Z, et al. Scaling Large Language Model-Based Multi-Agent Collaboration. In International Conference on Learning Representations.


Methodology

Interactive Reasoning

- Traversal strategy: topological ordering
 - Orderly information transmission
 - High scalability & generalizability
- The interaction pattern: multi-turn instructionresponse sequence -> mitigates hallucinations

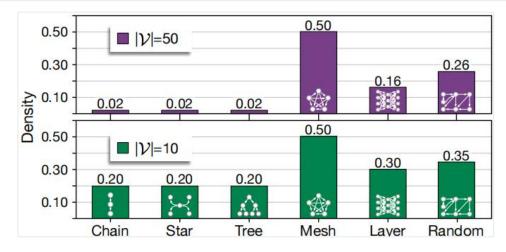
O Memory control: **long-term** (global) & **short-term** (interaction-level) memory decouples context length from **quadratic** to **linear** growth


Qian C, Xie Z, et al. Scaling Large Language Model-Based Multi-Agent Collaboration. In International Conference on Learning Representations.

Primary Results

- Significant improvement
 - Chain-structure method consistently outperforms most baseline models
 - Random-structure method achieves the highest performance
- Ablation study
 - Setting temperature to **0.0** and ablating profile causes an average performance degradation of **3.67**% across all topologies

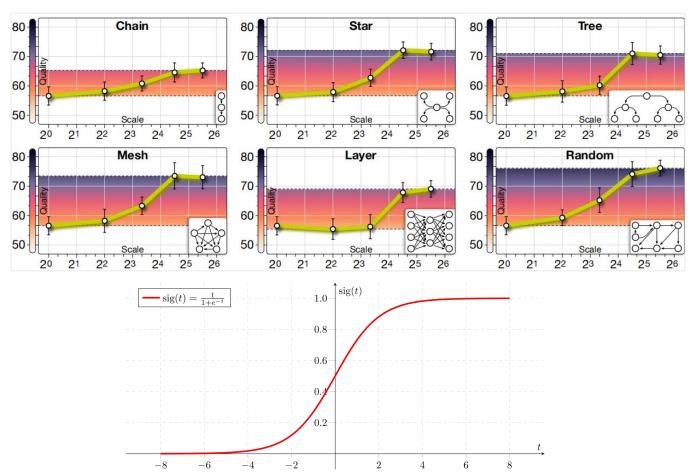
Method	Paradigm	MMLU	HumanEval	SRDD	CommonGen	Quality
СоТ	3	0.3544†	0.6098^{\dagger}	0.7222^{\dagger}	0.6165^{\dagger}	0.5757 [†]
AUTOGPT	8	0.4485†	0.4809^{\dagger}	0.7353^{\dagger}	0.5972	0.5655 [†]
GPTSWARM		0.2368†	0.4969†	0.7096^{\dagger}	0.6222^{\dagger}	0.5163 [†]
AGENTVERSE		0.2977†	0.7256^{\dagger}	0.7587^{\dagger}	0.5399^{\dagger}	0.5805
MACNET-CHAIN		0.6632	0.3720	0.8056	0.5903	0.6078
MacNet-Star		0.4456^{\dagger}	0.5549^{\dagger}	0.7679^{\dagger}	0.7382^{\dagger}	0.6267
MACNET-TREE		0.3421†	0.4878^{\dagger}	0.8044	0.7718^\dagger	0.6015
MACNET-MESH	A	0.6825	0.5122^{\dagger}	0.7792^{\dagger}	0.5525^{\dagger}	0.6316 [†]
MACNET-LAYER	₩₩	0.2780†	0.4939^{\dagger}	0.7623^{\dagger}	0.7176^{\dagger}	0.5629 [†]
MACNET-RANDOM		0.6877	0.5244^{\dagger}	0.8054	0.5912	0.6522



Topological Perspective Analysis

- No one-fits-all topology
- Density
 - Positively correlated with performance
- Shape
 - High clustering coefficient tend to exhibit superior performance — "small-world collaboration phenomenon"
 - O Wider topologies generally outperform deeper topologies
 - Performance of each topology varies across task domains

Method	Paradigm	MMLU	HumanEval	SRDD	CommonGen	Quality
CoT		0.3544†	0.6098 [†]	0.7222^{\dagger}	0.6165^{\dagger}	0.5757 [†]
AUTOGPT		0.4485†	0.4809^{\dagger}	0.7353^{\dagger}	0.5972	0.5655 [†]
GPTSWARM	**	0.2368†	0.4969†	0.7096^{\dagger}	0.6222^{\dagger}	0.5163 [†]
AGENTVERSE		0.2977†	0.7256^{\dagger}	0.7587^{\dagger}	0.5399^{\dagger}	0.5805
MACNET-CHAIN	@	0.6632	0.3720	0.8056	0.5903	0.6078
MACNET-STAR		0.4456^{\dagger}	0.5549^{\dagger}	0.7679^{\dagger}	0.7382^{\dagger}	0.6267
MACNET-TREE		0.3421†	0.4878^{\dagger}	0.8044	0.7718^\dagger	0.6015
MACNET-MESH		0.6825	0.5122^{\dagger}	0.7792^{\dagger}	0.5525^{\dagger}	0.6316 [†]
MACNET-LAYER		0.2780 [†]	0.4939^{\dagger}	0.7623^{\dagger}	0.7176^{\dagger}	0.5629 [†]
MACNET-RANDOM		0.6877	0.5244^{\dagger}	0.8054	0.5912	0.6522^{\dagger}

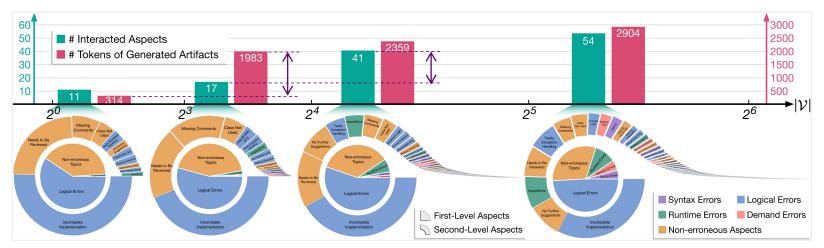

Collaborative Scaling Law

Trend Perspective

- Performance & number of nodes: resembles a sigmoid-variant function
- Necessitates appropriate collboration strategies

Timing Perspective

- Much smaller scales to manifest emergence,
 compared to neural scaling law
- Agent collaboration may serve as
 a "shortcut" to enhance intelligence levels



Collaborative Emergence

- Emergent Behaviors:
- O # Interacted Aspects and # Tokens of Generated Artifacts exhibits rapid growth when the node scale reaches 2³ or 2⁴, which aligns with the collaborative scaling law observed in performance

Token Distribution:

 The token distribution from underlying models typically follows a long-tail pattern, necessitating larger-scale sampling to likely capture these tail tokens -> Emergence

Qian C, Xie Z, et al. Scaling Large Language Model-Based Multi-Agent Collaboration. In International Conference on Learning Representations.

THANKS!

Qian C, Xie Z, et al.

Tsinghua University & Peng Cheng Laboratory

Contact: qianc62@gmail.com xzh18610221075@gmail.com