

Revisiting Nearest Neighbor for Tabular Data: A Deep Tabular Baseline Two Decades Later

Han-Jia Ye, Huai-Hong Yin, De-Chuan Zhan Nanjing University Wei-Lun (Harry) Chao
The Ohio State University

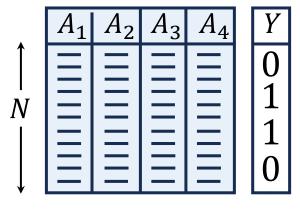
Paper link: https://openreview.net/forum?id=JytL2MrlLT

Code: https://github.com/LAMDA-Tabular/TALENT

Learning with Tabular Data

- Given a training set $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$,
 - *N* instances (rows) and *d* columns (attributes)
 - $x_i \in \mathbb{R}^d$, with *categorical* and *numerical* features/attributes
 - $y_i \in \{0,1\}$ for binary classification, $y_i \in \{1, ..., C\}$ for C-way classification, and $y_i \in \mathbb{R}$ for regression
- The goal is to learn a mapping f. Given an unseen instance x^* ,

$$\hat{y}^* = f(\mathbf{x}^*, \mathcal{D})$$

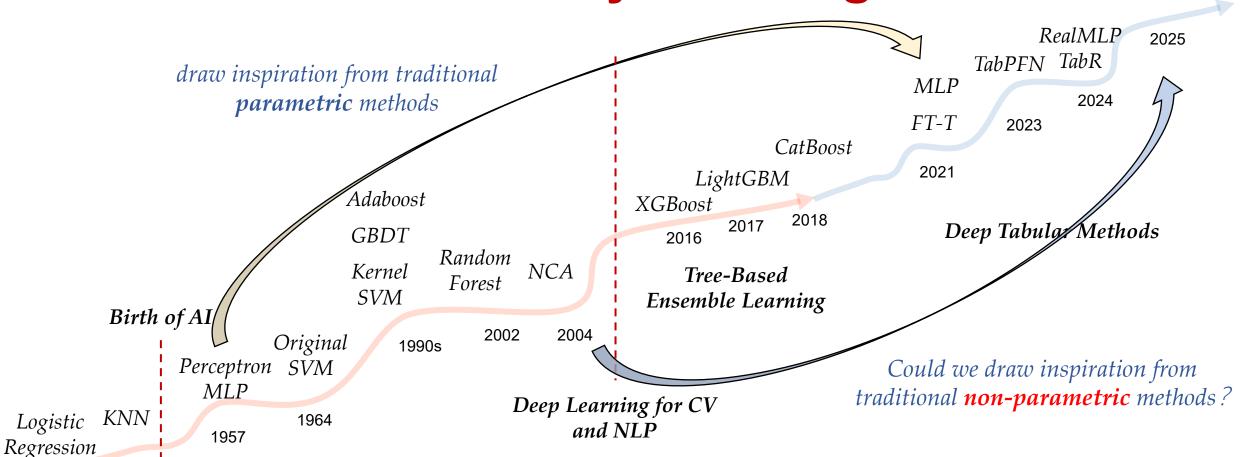


Binary Classification

- Other related tabular tasks
 - Clustering, imputation, generation, anomaly detection, etc.

Methods for Tabular Datasets are Constantly Evolving

ModernNCA



1951

Before 1900

Neighborhood Component Analysis (NCA)

- Neighborhood Component Analysis (NCA) for classification [Goldberger et al., NIPS'04]
- The probability that x_i locates in the neighborhood of x_i

$$\Pr \left(\boldsymbol{x}_{j} \in \mathcal{N}(\boldsymbol{x}_{i}; \mathcal{D}) \mid \boldsymbol{x}_{i}, \mathcal{D}, \boldsymbol{L} \right) = \frac{\exp \left(- \mathrm{dist}^{2} \left(\boldsymbol{L}^{\top} \boldsymbol{x}_{i}, \boldsymbol{L}^{\top} \boldsymbol{x}_{j} \right) \right)}{\sum_{(\boldsymbol{x}_{l}, \boldsymbol{y}_{l}) \in \mathcal{D}, \boldsymbol{x}_{l} \neq \boldsymbol{x}_{i}} \exp \left(- \mathrm{dist}^{2} \left(\boldsymbol{L}^{\top} \boldsymbol{x}_{i}, \boldsymbol{L}^{\top} \boldsymbol{x}_{l} \right) \right)}$$

• The probability that an instance x_i is classified as the class y_i is

$$\Pr(\hat{y}_i = y_i \mid \mathbf{x}_i, \mathcal{D}, \mathbf{L}) = \sum_{(\mathbf{x}_i, \mathbf{y}_i) \in \mathcal{D} \land \mathbf{y}_i = \mathbf{y}_i} \Pr(\mathbf{x}_j \in \mathcal{N}(\mathbf{x}_i; \mathcal{D}) \mid \mathbf{x}_i, \mathcal{D}, \mathbf{L})$$

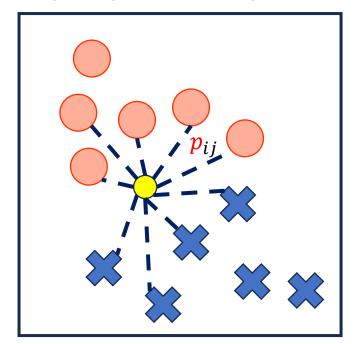
• NCA maximizes the sum of $\Pr(\hat{y}_i = y_i \mid x_i, \mathcal{D}, \mathbf{L})$ over all instance in \mathcal{D} and use KNN over the space projected by \mathbf{L} in the test phase.

Our First Attempt

The learning objective: soft-NN

$$\hat{y}_i = \sum_{(x_j, y_j) \in \mathcal{D}} \frac{p_{ij}}{p_{ij}} y_j = \sum_{(x_j, y_j) \in \mathcal{D}} \frac{\exp\left(-\operatorname{dist}^2\left(\phi(x_i), \phi(x_j)\right)\right)}{\sum_{(x_l, y_l) \in \mathcal{D}, x_l \neq x_i} \exp\left(-\operatorname{dist}^2\left(\phi(x_i), \phi(x_l)\right)\right)} y_j$$

• $\phi(x_i) = L^T x_i$. Minimize the sum of negative log probability.



- Prediction Strategy
 - Use Soft-NN to make prediction
 - Do not restrict L to project into low-dimensional space
 - Use SGD instead of L-BFGS

Denote this improved *linear* version of NCA as L-NCA

Our Second Attempt

- Architectures
 - Define ϕ as MLP, and a single block is implemented by [Gorishniy et al., NIPS'21]

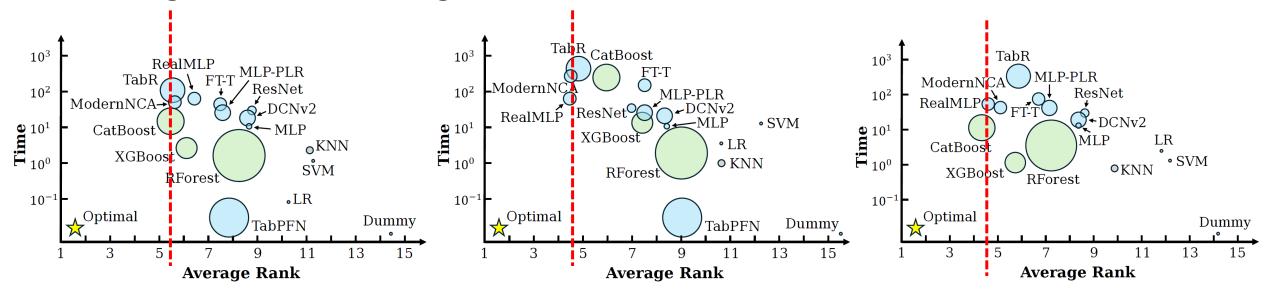
```
g(x_i) = \text{Linear}(\text{Dropout}((\text{ReLU}(\text{Linear}(\text{BatchNorm}(x_i)))))))
```

- One-hot encoding for categorical features
- PLR (lite) encoding for numerical features
- Stochastic Neighborhood Sampling (SNS)
 - Sample *a subset of training set* in a mini-batch to act as the neighbor candidates, while use *the whole training set* during the inference.
- Distance Function: Euclidean distance

Denote this improved nonlinear version of NCA as ModernNCA (MNCA)

Experiments

- 300 datasets in total
 - 120 binary classification, 80 multi-class classification, 100 regression
- Average rank vs. Training time vs. Model Size



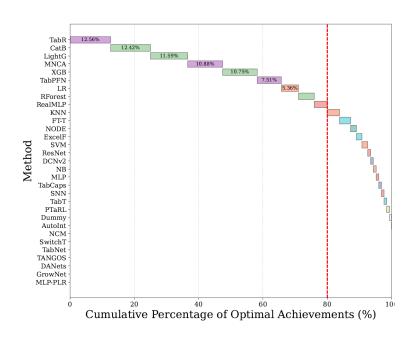
Binary Classification

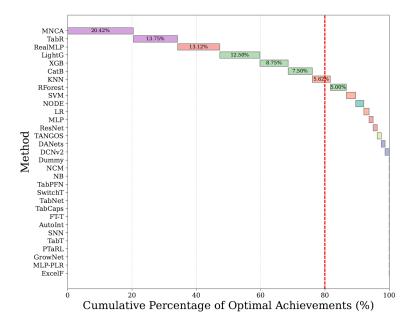
Multi-Class Classification

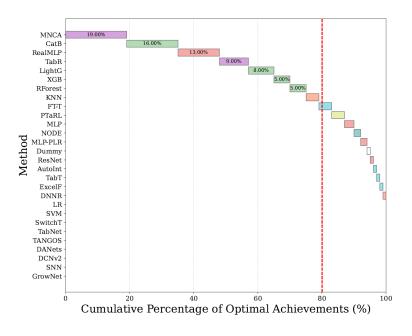
Regression

Experiments

- 300 datasets in total
 - 120 binary classification, 80 multi-class classification, 100 regression
- PAMA (Probability of Achieving the Best Accuracy)







Binary Classification

Multi-Class Classification

Regression

Ablations

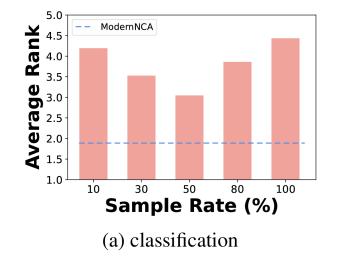
- Tiny-Benchmark with 45 datasets
- From NCA to L-NCA on 27 classification datasets

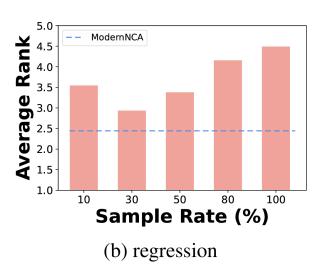
	High dimension	SGD optimizer	Log loss	Soft-NN prediction	Average rank
NCAv0					4.400
NCAv1	\checkmark				3.708
NCAv2	\checkmark	\checkmark			3.296
NCAv3	\checkmark	\checkmark	\checkmark		3.192
NCAv4	\checkmark	\checkmark	\checkmark	\checkmark	2.962
MLP	✓	✓	✓		3.000

Ablations

- Tiny-Benchmark with 45 datasets
- Average rank changes from L-NCA to M-NCA

	MLP	Linear	w/ LayerNorm	ResNet
Classification Regression	2.333	2.778 2.433	2.537 2.528	2.352 2.806





Come to out poster!

Poster Session 3 Fri 25 Apr 10 a.m. CST — 12:30 p.m. CST

- We revisit and enhance one of the most representative neighborhood-based methods, NCA, by incorporating modern deep learning techniques.
- ModernNCA establishes itself as <u>a very strong baseline for deep tabular</u> <u>prediction</u>, frequently outperforming both tree-based and deep learning models across a wide range of classification and regression tasks.

Tabular Toolbox

TALENT: A Tabular Analytics and Learning Toolbox

https://github.com/LAMDA-Tabular/TALENT

30+ deep learning methods (with methods on NeurIPS'24/ICLR'25), unifying interfaces, customizability.