Boosting Perturbed Gradient Ascent for Last-Iterate Convergence in Games

Kenshi Abe^{1,2}, Mitsuki Sakamoto¹, Kaito Ariu¹, Atsushi Iwasaki²

¹CyberAgent, Japan ²University of Electro-Communications, Japan

Introduction

Learning in Games

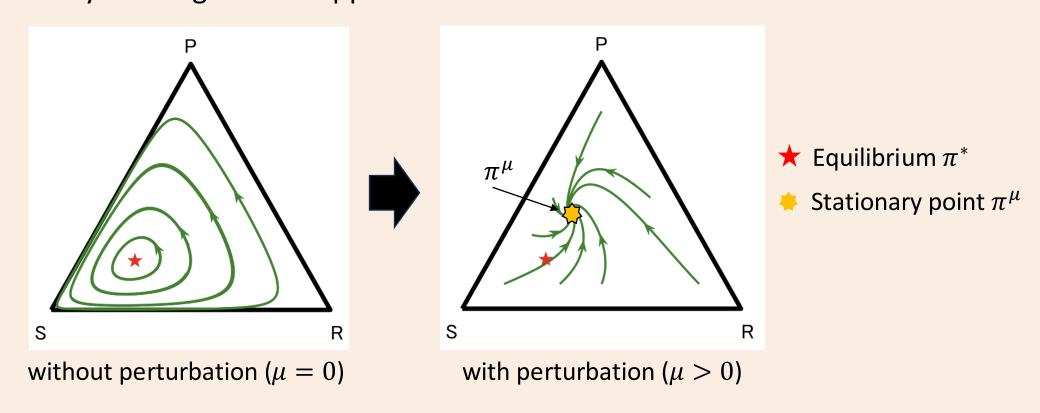
- This paper proposes a novel payoff-perturbed learning algorithm, Gradient Ascent with Boosting Payoff Perturbation (GABP), enabling it to achieve fast convergence to Nash equilibrium (NE) in games.
- *N*-Player Monotone Games
 - ☐ A family of games including: Concave-convex games; Cournot competition [Monderer & Shapley, 1996] and zero-sum polymatrix games [Cai & Daskalakis, 2011; Cai et al., 2016]
- **■** Average-Iterate Convergence
 - lacktriangled In online learning setting, learning algorithms update the strategy π_i^t based on the gradient feedback $\widehat{\nabla}_{\pi_i} v_i(\pi^t)$, as in algorithms like Gradient Ascent:

$$\pi_i^{t+1} = \prod_{\chi_i} \left[\pi_i^t + \eta_t \widehat{\nabla}_{\pi_i} v_i(\pi^t) \right].$$
 Next strategy Gradient feedback

- \blacksquare In many learning algorithms, the average strategies $\frac{1}{T}\sum_{t=1}^{T}\pi^{t}$ converge to NE.
- However, the actual trajectory of π^t may fail to converge [Mertikopoulos et al., 2018].
- Last-Iterate Convergence
 - ☐ The updated strategy profile itself converges to NE
 - ☐ A stronger and more desirable property than average-iterate convergence

Existing Algorithms

- **■** Optimistic Learning Algorithms
 - Representative algorithms that achieve last-iterate convergence [<u>Daskalakis</u> et al., 2018; <u>Daskalakis & Panageas</u>, 2019; <u>Mertikopoulos et al.</u>, 2019]
- However, they perform suboptimally with feedback contaminated by some noise.
- Payoff-Perturbed Learning Algorithms (e.g., [Facchinei & Pang, 2003])
- ☐ Introduces strongly convex penalties to the players' payoff functions
- ☐ Only converges to an approximate NE



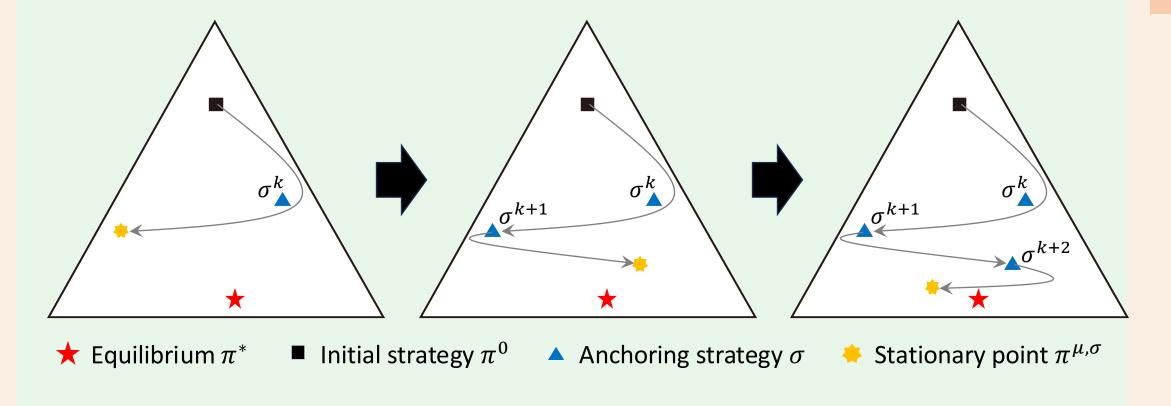
Proposed Algorithm

Gradient Ascent with Boosting Payoff Perturbation

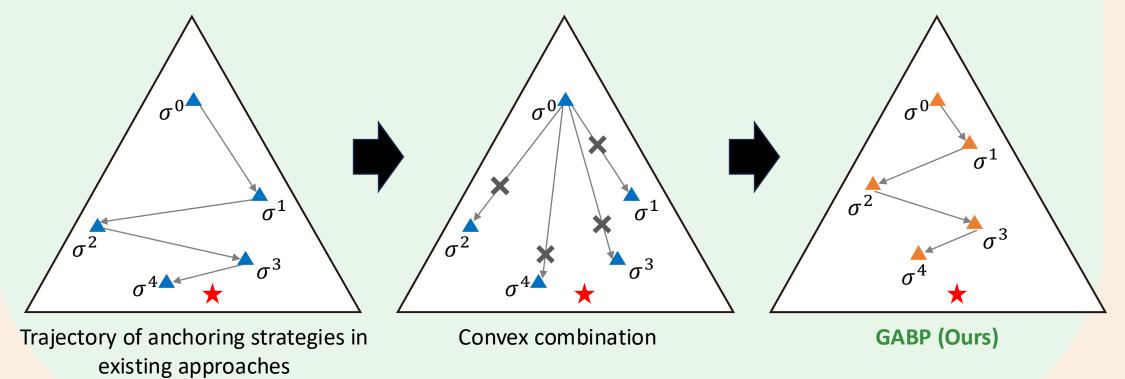
■ GABP perturbs the payoff function v_i by the distance $||\pi_i^t - \sigma_i^k||^2$ between the current and anchoring strategies (i.e., π_i^t and σ_i^k):

$$\pi_i^{t+1} = \prod_{\chi_i} \left[\pi_i^t + \eta_t \left(\widehat{\nabla}_{\pi_i} v_i(\pi^t) - \mu (\pi_i^t - \sigma_i^k) \right) \right].$$
 Perturbation payoff Perturbation strength Anchoring strategy

- **■** Anchoring Strategy Update
 - lacksquare To ensure convergence to NE, the anchoring strategy σ^k is updated based on the current strategy π^t at a predefined interval T_{σ} .
 - Although existing approaches directly overwrite σ^k with π^t [Perolat et al., 2021; Abe et al., 2023; 2024], the anchoring strategy can change dramatically, which often results in instability in the learning dynamics.



- Blended Anchoring Strategy
 - \square GABP employs a convex combination $\sigma^k = \frac{k\pi^t + \pi^0}{k+1}$ of the current strategy π^t and the initial strategy π^0 as an anchoring strategy.
 - \Box This enables the anchoring strategy σ^k to gradually evolve from π^0 to π^t , which contributes to both stabilization and faster convergence!



Theoretical/Experimental Results

Last-Iterate Convergence Results

■ A metric of proximity to NE:

$$GAP(\pi) := \max_{\widetilde{\pi} \in \mathcal{X}} \sum_{i=1}^{N} \langle \nabla_{\pi_i} v_i(\pi), \widetilde{\pi}_i - \pi_i \rangle.$$

Theorem 1 (Full Feedback: $\widehat{\nabla}_{\pi_i} v_i(\pi^t) = \nabla_{\pi_i} v_i(\pi^t)$)

If we set $T_{\sigma} = \Theta(\ln T)$, then π^T converges to NE at the rate of $\widetilde{O}(1/T)$:

$$\mathsf{GAP}(\boldsymbol{\pi}^T) = \boldsymbol{O}\left(\frac{\ln T}{T}\right).$$

Theorem 2 (Noisy Feedback: $\widehat{\nabla}_{\pi_i} v_i(\pi^t) = \nabla_{\pi_i} v_i(\pi^t) + \xi_i^t$)

If we set $T_{\sigma} = \Theta(T^{6/7})$, then π^T converges to NE:

$$\mathbb{E}\big[\mathsf{GAP}\big(\boldsymbol{\pi}^T\big)\big] = \boldsymbol{O}\left(\frac{\ln T}{T^{1/7}}\right).$$

GABP achieves improved rates over APGA under both full and noisy feedback. Algorithm Full Noisy Feedback Optimistic Gradient (OG) $O(1/\sqrt{T})$ X [Golowich et al., 2020b; Gorbunov et al., 2022;

<u>Cai et al., 2022a</u>]

Accelerated Optimistic Gradient (AOG) O(1/T) [Cai & Zheng, 2023]

Adaptively Perturbed Gradient Ascent (APGA) $\tilde{O}(1/\sqrt{T})$ $\tilde{O}(1/T^{1/10})$ [Abe et al., 2024]

GABP (Ours) $\widetilde{O}(1/T)$ $\widetilde{O}(1/T^{1/7})$

Experimental Results

GABP performs better under both full and noisy feedback!

