

Unsupervised Meta-Learning via In-Context Learning

Anna Vettoruzzo, Lorenzo Braccaioli, Joaquin Vanschoren, Marlena Nowaczyk

Contacts

Motivation

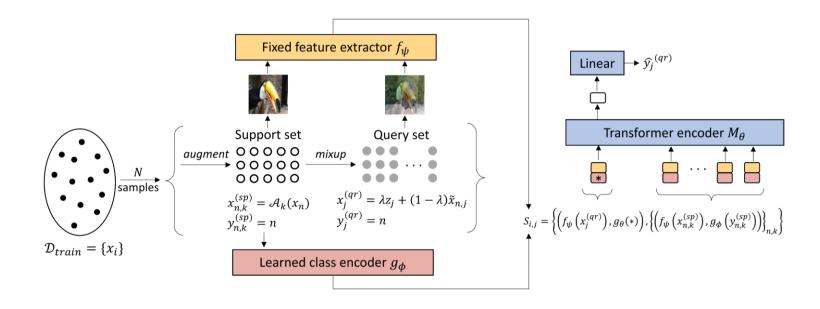
Unsupervised data

Unlabeled data is everywhere.

Generalization

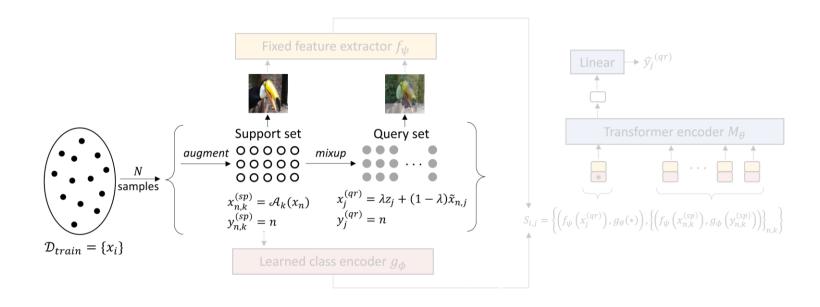
Train once and apply to different datasets.

Fast inference


In-context learning for quick predictions, without fine-tuning.

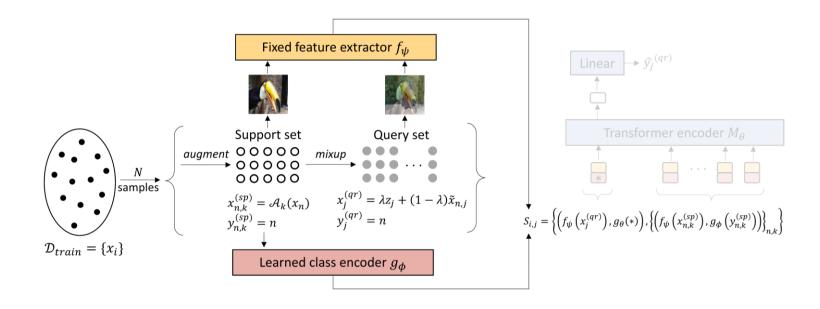
CAMeLU: Context Aware Meta-Learning in Unsupervised scenarios.

- Propose a novel task creation mechanism for unsupervised meta-learning.
- Reframe meta-learning as a non-causal sequence modeling problem.
- Meta-learn a transformer model for efficient cross-domain generalization.



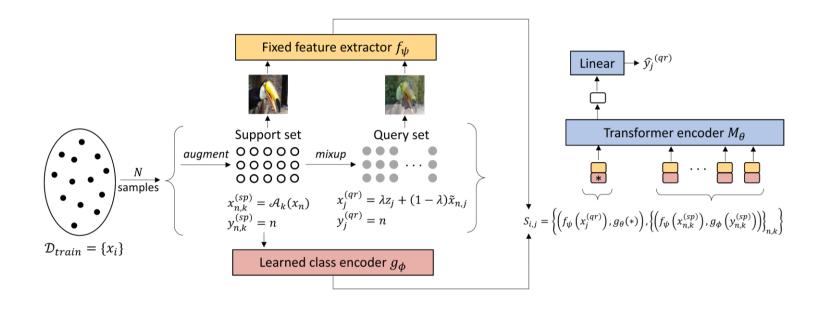
CAMeLU: Context Aware Meta-Learning in Unsupervised scenarios.

- Propose a novel task creation mechanism for unsupervised meta-learning.
- Reframe meta-learning as a non-causal sequence modeling problem.
- Meta-learn a transformer model for efficient cross-domain generalization.



CAMeLU: Context Aware Meta-Learning in Unsupervised scenarios.

- Propose a novel task creation mechanism for unsupervised meta-learning.
- Reframe meta-learning as a non-causal sequence modeling problem.
- Meta-learn a transformer model for efficient cross-domain generalization.



CAMeLU: Context Aware Meta-Learning in Unsupervised scenarios.

- Propose a novel task creation mechanism for unsupervised meta-learning.
- Reframe meta-learning as a non-causal sequence modeling problem.
- Meta-learn a transformer model for efficient cross-domain generalization.

Feature space representation

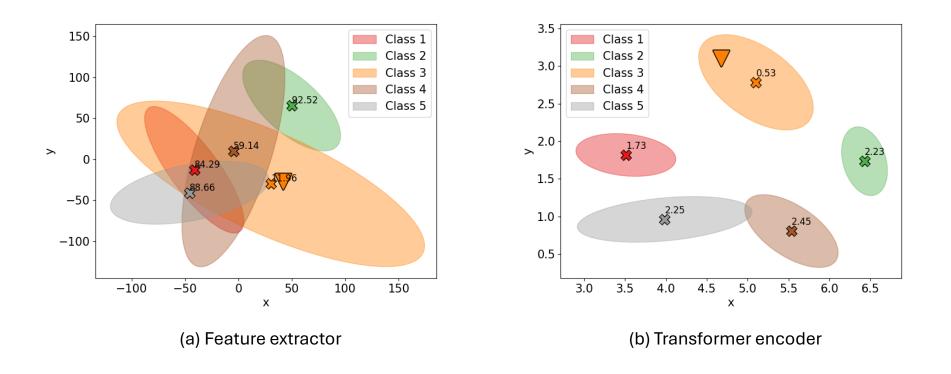


Figure 1: Visualization of clustered embeddings obtained with CAMeLU after the feature extractor and the transformer encoder on a 5-way 5-shot task sampled from the CUB dataset.

From memorization to generalization

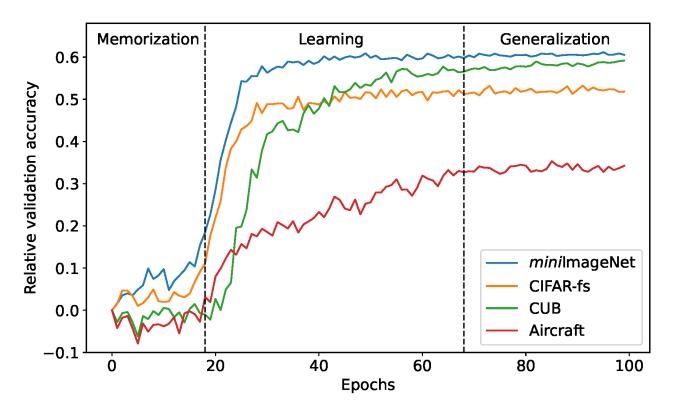


Figure 2: Learning trend when transferring knowledge from a different prior dataset (ImageNet-964).

Comparative results

Table 1: Accuracy (%) on 5-way 5-shot tasks. The symbol † indicates results affected by data leakage.

	miniImageNet		CIFAR-fs		CUB		Aircraft		Meta-iNat	
Method	5w1s	5w5s	5w1s	5w5s	5w1s	5w5s	5w1s	5w5s	5w1s	5w5s
In-Domain										
CACTUs-MAML	43.30	54.21	42.00	56.64	31.19	36.81	24.06	27.26	20.13	21.84
CACTUs-ProtoNet	48.85	62.52	50.90	64.52	33.93	44.41	26.27	30.88	27.30	29.08
UMTRA	39.93	50.73	32.93	46.13	27.06	36.6	22.40	31.73	28.96	37.12
Meta-GMVAE	55.38^\dagger	65.10^{\dagger}	52.02	64.18	33.59	39.09	24.83	27.60	34.22	40.23
PsCo	47.29	64.85	42.21	62.92	33.09	51.02	26.19	38.80	36.97	55.88
Cross-Domain										
PsCo	67.89	90.17	53.34	76.22	43.35	70.19	29.87	38.20	46.21	70.05
CAMeLU	76.51	92.14	61.79	80.43	65.52	80.35	33.17	39.11	57.27	75.45
CAML (supervised)	81.75	92.31	59.44	75.27	54.63	66.81	28.92	32.06	50.86	67.07

Conclusion

- We present a novel approach to unsupervised meta-learning through in-context learning.
- We propose a novel task creation mechanism.
- Our approach
 - ✓ generalizes cross-domain,
 - √ is scalable,
 - ✓ makes fast, in-context predictions without fine-tuning.

Contacts

Unsupervised Meta-Learning via In-Context Learning

Anna Vettoruzzo, Lorenzo Braccaioli, Joaquin Vanschoren, Marlena Nowaczyk

Contacts

