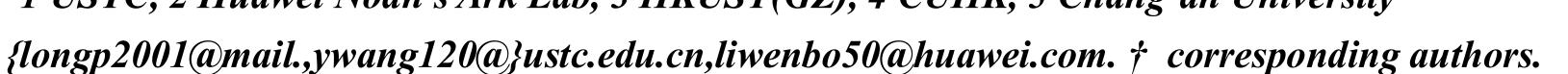
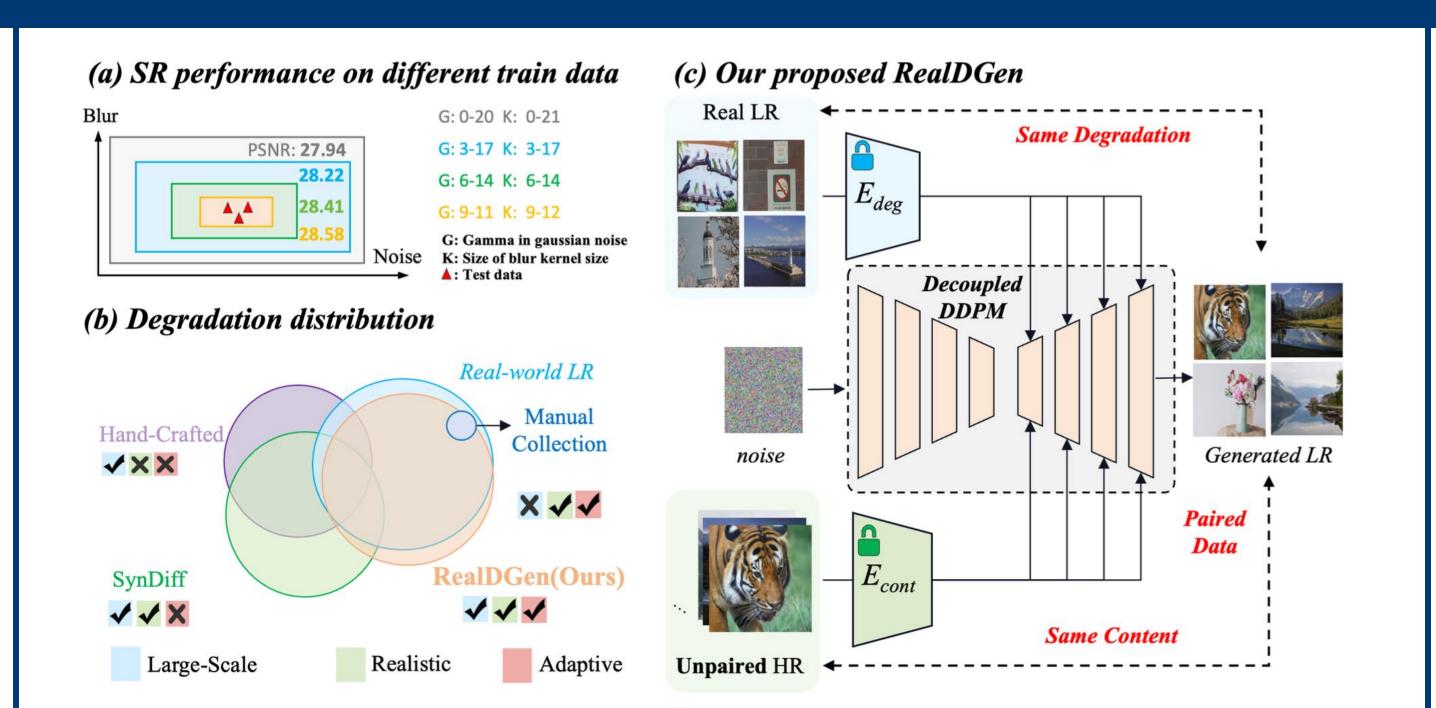
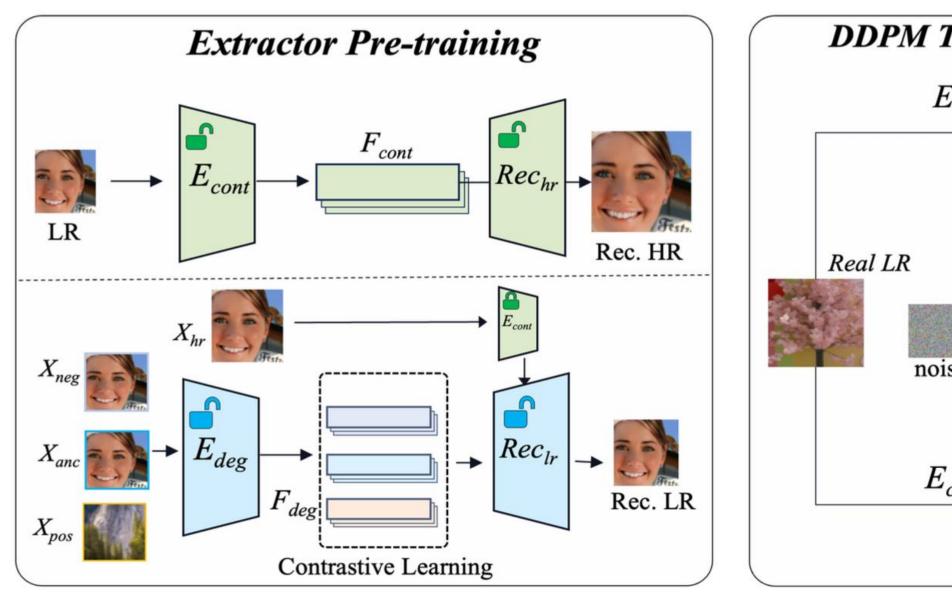


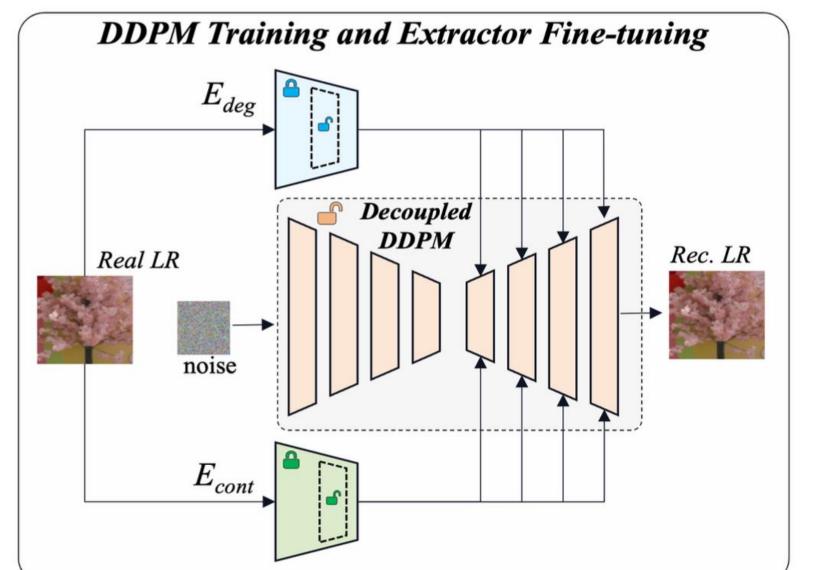
香港科技大学(广州)



Long Peng1,2*, Wenbo Li2†, Renjing Pei2, Jingjing Ren3, Jiaqi Xu4, Yang Wang1,5†, Yang Cao1, Zheng-Jun Zha1 1 USTC, 2 Huawei Noah's Ark Lab, 3 HKUST(GZ), 4 CUHK, 5 Chang'an University




Motivation and Contribution


An ideal data generation system for Real-world image Super-Resolution should meet the following criteria:

- I) Large-scale, to satisfy the extensive data requirements for training deep learning models.
- II) Realistic, to enable Real SR models to accurately learn the characteristics of real-world degradation.
- III) Adaptive, to flexibly generate data with arbitrary given degradation patterns, improving generalization in target domains.

- We propose a novel unsupervised Realistic Decoupled Data Generator (RealDGen) to adaptively generate large-scale, realistic, and diverse data for real-world super-resolution.
- We introduce well-designed content and degradation extraction strategies and a novel content-degradation decoupled diffusion model to generate realistic LR with arbitrary unpaired LR and HR conditions.
- Compared with previous methods, our method significantly advances the generalization ability of popular SR models, achieving the best performance on real-world benchmarks.

RealDGen

Algorithm 1 Decoupled DDPM Training

1: repeat

2: $\mathbf{x}_{lr} \sim q(\mathbf{x}_{lr})$

3: $t \sim \text{Uniform}(\{1,\ldots,T\})$

4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

5: $F_{cont} = E_{cont} \left(\mathbf{x}_{lr} \right)$

6: $F_{deg} = E_{deg} \left(\mathbf{x}_{lr} \right)$ 7: $\mathbf{c} = \mathcal{M}\left(F_{cont}, F_{deg}\right)$

8: Take gradient descent step on

 $\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, \mathbf{c}, t) \right\|^2$ 9: **until** converged

Algorithm 2 Data Generation

1: $\mathbf{x}_{lr} \sim q\left(\mathbf{x}_{lr}\right), \mathbf{x}_{hr} \sim p\left(\mathbf{x}_{hr}\right)$

2: $\mathbf{c} = \mathcal{M}\left(E_{deg}\left(\mathbf{x}_{lr}\right), E_{cont}\left(\mathbf{x}_{hr}\right)\right)$ 3: $\tau \sim \text{Uniform}(\{1,\ldots,T\})$

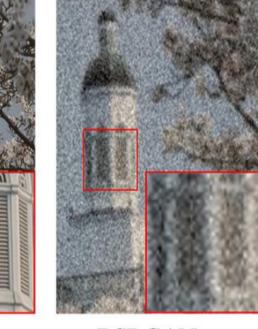
4: $\mathbf{x}_t = (\sqrt{\bar{\alpha}_t} \mathcal{D}(\mathbf{x}_{lr}) + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}), \, \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

5: **for** $t = \tau, ..., 1$ **do**

6: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$

7: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, \mathbf{c}, t) \right) + \sigma_t \mathbf{z}$

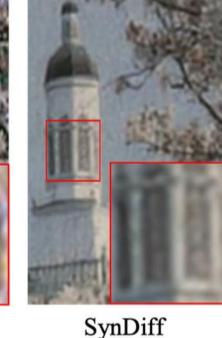
8: end for

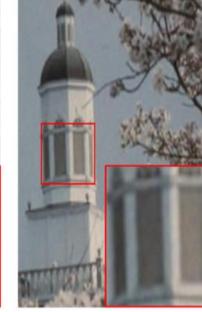

9: return x_0

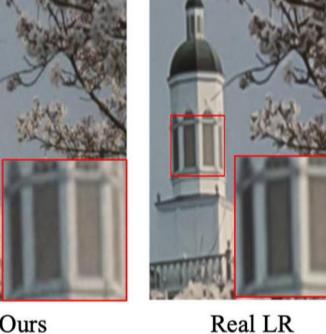
Experimental Results

PSNR-oriented Training	Rea	ISR	DRea	alSR	Smart	Phone
	PSNR↑	SSIM↑	PSNR†	SSIM†	PSNR↑	SSIM↑
SwinIR (Real-ESRGAN) SwinIR (BSRGAN)	24.395	0.7760	26.944	0.8308	27.395	0.8338
	25.852	0.7808	27.985	0.8308	28.049	0.8407
SwinIR (SynDiff) SwinIR (Ours)	25.589	0.7687	28.301	0.8309	28.566	0.8453
	26.094	0.7822	28.721	0.8341	28.737	0.8489
RRDB (Real-ESRGAN) RRDB (BSRGAN) RRDB (SynDiff) RRDB (Ours)	24.579	0.7614	27.131	0.8193	27.841	0.8378
	25.406	0.7685	27.523	0.8017	28.029	0.8278
	25.488	0.7691	28.078	0.8257	28.303	0.8426
	26.238	0.7747	28.727	0.8340	28.754	0.8507
HAT (Real-ESRGAN) HAT (BSRGAN) HAT (SynDiff) HAT (Ours)	24.893	0.7726	27.339	0.8215	27.781	0.8336
	25.997	0.7816	28.135	0.8273	28.137	0.8369
	25.790	0.7584	28.506	0.8286	28.508	0.8471
	26.140	0.7832	28.802	0.8345	28.767	0.8489
SwinIR-L (Real-ESRGAN) SwinIR-L (BSRGAN) SwinIR-L (SynDiff) SwinIR-L (Ours)	24.367	0.7723	27.018	0.8244	27.581	0.8409
	25.651	0.7800	27.813	0.8301	28.118	0.8437
	25.281	0.7516	28.170	0.8244	28.474	0.8487
	26.025	0.7810	28.869	0.8328	28.868	0.8522

Perceptual-oriented Training	RealSR		DRealSR		SmartPhone	
	LPIPS↓	FID↓	LPIPS↓	FID↓	LPIPS↓	FID↓
SwinIR (Real-ESRGAN)	0.3037	69.965	0.3219	39.175	0.4053	78.242
SwinIR (BSRGAN)	0.2945	79.833	0.3023	38.541	0.3043	76.871
SwinIR (SynDiff)	0.3835	103.179	0.3801	54.588	0.3129	83.485
SwinIR (Ours)	0.2536	69.736	0.2660	38.257	0.2964	74.778
RRDB (Real-ESRGAN)	0.3480	82.056	0.3551	39.310	0.3480	77.573
RRDB (BSRGAN)	0.3041	77.412	0.3127	36.528	0.3381	78.812
RRDB (SynDiff)	0.4004	98.798	0.4017	56.573	0.3511	88.431
RRDB (Ours)	0.2972	76.973	0.3077	36.259	0.3125	76.723
HAT (Real-ESRGAN)	0.3066	79.209	0.3219	41.862	0.4022	87.950
HAT (BSRGAN)	0.2852	80.192	0.2835	41.723	0.3049	81.247
HAT (SynDiff)	0.3332	93.763	0.3465	50.808	0.3171	85.587
HAT (Ours)	0.2457	67.573	6.2587	41.319	0.2816	76.873
SwinIR-L (Real-ESRGAN)	0.3108	79.491	0.3234	42.986	0.4021	87.531
SwinIR-L (BSRGAN)	0.3013	84.195	0.2978	43.246	0.3146	83.444
SwinIR-L (SynDiff)	0.3793	98.646	0.3748	52.464	0.3190	80.708
SwinIR-L (Ours)	0.2795	75.779	0.2862	42.542	0.3047	78.632







Real-ESRGAN

BSRGAN

Real-ESRGAN

SynDiff