

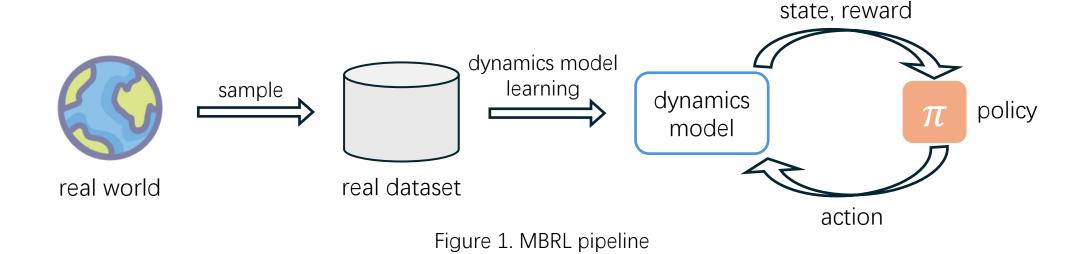
Any-step Dynamics Model Improves Future Predictions for Online and Offline Reinforcement Learning

Haoxin Lin^{1,2,3}, Yu-Yan Xu³, Yihao Sun^{1,2}, Zhilong Zhang^{1,2,3}, Yi-Chen Li^{1,2,3}, Chengxing Jia^{1,2,3}, Junyin Ye^{1,2,3}, Jiaji Zhang^{1,2}, Yang Yu^{1,2,3}

¹National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China ²School of Artificial Intelligence, Nanjing University, Nanjing, China ³Polixir Technologies, Nanjing, China

Presented by Haoxin Lin

Background of MBRL



- Model-based Reinforcement Learning (MBRL) can reduce the reliance of policy optimization on realworld data
 - learning a dynamics model T(s',r|s,a) from real-world data
 - facilitating policy exploration within the learned dynamics model

Background of MBRL

- Bootstrapping prediction is unavoidable during roll-out in the single-step dynamics model,
 - which attributes the next state to the prediction of the current state at each step

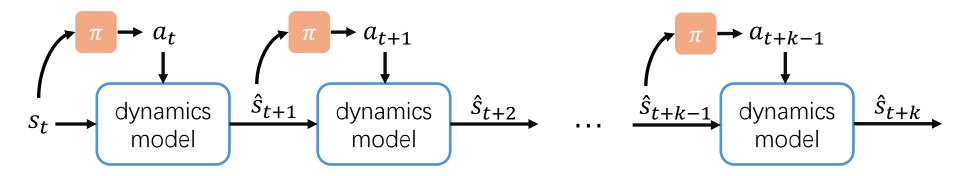


Figure 2. k-step roll-outs in the single-step dynamics model.

- Bootstrapping predictions lead to compounding errors^[1] during model roll-out
 - the deviation of generated states increases with the roll-out length



[1] Tian Xu et al. Error bounds of imitating policies and environments for reinforcement learning. IEEE TPAMI, 2021.

Our Method

• We propose the **A**ny-step **D**ynamics **M**odel (ADM) that allows for the use of variable-length plans as inputs for predicting future states without frequent bootstrapping.

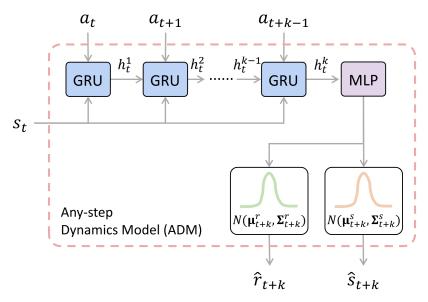
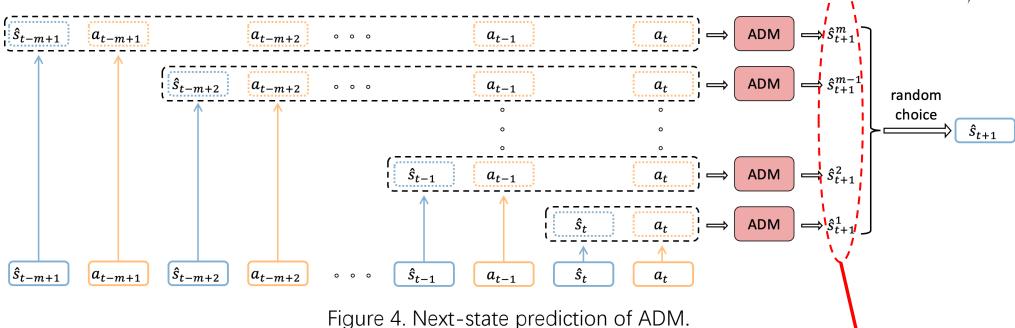


Figure 3. Any-step dynamics model structured using an RNN.

 ADM can predict future states across multiple steps, reducing the number of bootstrapping during the model roll-out.

Our Method



ADM naturally possesses the ability to generate diverse predictions.

While predicting \hat{s}_{t+1} , ADM has m choices:

- using $(\hat{s}_{t-m+1}, a_{t-m+1}, a_{t-m+2}, ..., a_t)$ as inputs;
- using $(\hat{s}_{t-m+2}, a_{t-m+2}, ..., a_t)$ as inputs;
- _ · · ·
- using (\hat{s}_t, a_t) as inputs.

The variance among several prediction choices can be used as an uncertainty quantifier.

Experiments

Evaluation of Compounding Error

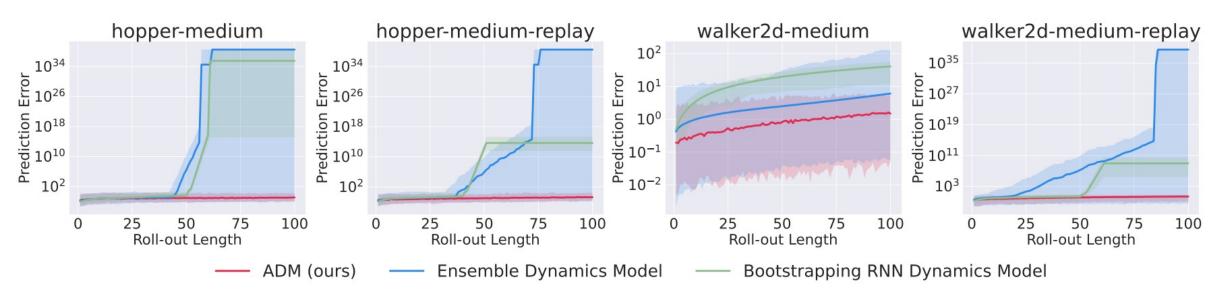


Figure 5. Growth curves of the compounding error (in log scale).

- the growth rate of ADM's compounding error curve is smaller compared to other dynamics models

Experiments

• Offline Performance (policy optimization within a trained ADM)

- D4RL results

Task Name	BC	CQL	TD3+BC	EDAC MOPO	COMBO	RAMBO	CBOP	MOBILE	ADMPO-OFF (ours)
hopper-random	3.7	5.3	8.5	25.3 31.7	17.9	25.4	31.4	31.9	32.7±0.2
halfcheetah-random	2.2	31.3	11.0	28.4 38.5	38.8	39.5	32.8	39.3	45.4±2.8
walker2d-random	1.3	5.4	1.6	16.6 7.4	7.0	0.0	17.8	17.9	22.2±0.2
hopper-medium	54.1	61.9	59.3	101.6 62.8	97.2	87.0	102.6	106.6	107.4±0.6
halfcheetah-medium	43.2	46.9	48.3	65.9 73.0	54.2	77.9	74.3	74.6	72.2 ± 0.6
walker2d-medium	70.9	79.5	83.7	92.5 84.1	81.9	84.9	95.5	87.7	93.2±1.1
hopper-medium-replay	16.6	86.3	60.9	101.0 103.5	89.5	99.5	104.3	103.9	104.4±0.4
halfcheetah-medium-replay	37.6	45.3	44.6	61.3 72.1	55.1	68.7	66.4	71.7	67.6±3.4
walker2d-medium-replay	20.3	76.8	81.8	87.1 85.6	56.0	89.2	92.7	89.9	95.6±2.1
hopper-medium-expert	53.9	96.9	98.0	110.7 81.6	111.1	88.2	111.6	112.6	112.7±0.3
halfcheetah-medium-expert	44.0	95.0	90.7	106.3 90.8	90.0	95.4	105.4	108.2	103.7±0.2
walker2d-medium-expert	90.1	109.1	110.1	114.7 112.9	103.3	56.7	117.2	115.2	114.9 ± 0.3
Average	36.5	61.6	58.2	76.0 70.3	66.8	67.7	79.3	80.0	81.0

- NeoRL results

Task Name	BC	CQL	TD3+BC	EDAC	MOPO	MOBILE	ADMPO-OFF (ours)
neorl-hopper-low	15.1	16.0	15.8	18.3	6.2	17.4	22.3±0.1
neorl-halfcheetah-low	29.1	38.2	30.0	31.3	40.1	54.7	52.8±1.2
neorl-walker2d-low	28.5	44.7	43.0	40.2	11.6	37.6	55.9±3.8
neorl-hopper-medium	51.3	64.5	70.3	44.9	1.0	51.1	51.5±5.0
neorl-halfcheetah-medium	49.0	54.6	52.3	54.9	62.3	77.8	69.3±1.7
neorl-walker2d-medium	48.7	57.3	58.5	57.6	39.9	62.2	70.1±2.4
neorl-hopper-high	43.1	76.6	75.3	52.5	11.5	87.8	87.6±4.9
neorl-halfcheetah-high	71.3	77.4	75.3	81.4	65.9	83.0	84.0±0.8
neorl-walker2d-high	72.6	75.3	69.6	75.5	18.0	74.9	82.2±1.9
Average	45.4	56.1	54.5	50.7	28.5	60.7	64.0

Experiments

- Uncertainty Quantification
 - Comparison between ADM and ensemble dynamics model

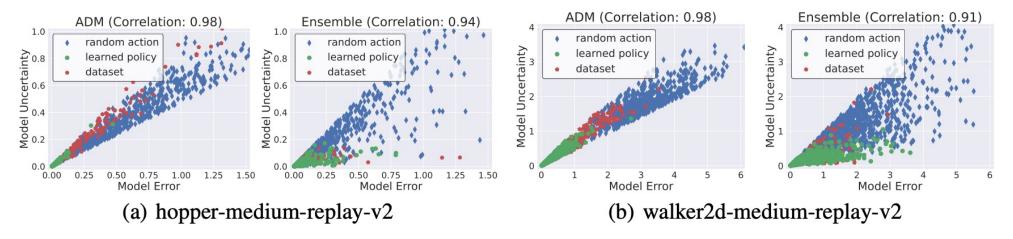


Figure 6. Comparison between ADM and ensemble model in uncertainty quantification.

- ADM has better consistency between uncertainty and model error.
- ADM better distinguishes different types of policies.

Thank you!