Episodic Novelty Through Temporal Distance

Yuhua Jiang*, Qihan Liu***,** Yiqin Yang, Xiaoteng Ma, DianyuZhong Jun Yang, Bin Liang, Bo Xu, Chongjie Zhang, Qianchuan Zhao

- Reinforcement Learning (RL) has achieved great success.
 - Given a MDP $\langle \mathcal{S}, \mathcal{A}, P, r, \mu_S, \gamma \rangle$
 - Optimize a policy π to maximize the cumulative reward:

$$\max_{\pi} \mathbb{E}_{s_0 \sim \mu_S, a_t \sim \pi(\cdot | s_t), s_{t+1} \sim P(\cdot | s_t, a_t)} \Big[\sum_{} \gamma^t r(s_t, a_t, s_{t+1}) \Big]$$

- Sparse reward is the challenge.
 - Hard exploration.

Exploration in Sparse Reward Setting

Sparse Reward

Intrinsic Motivation

Intrinsic Reward (Bonus)

$$r(s_t, a_t, s_{t+1}) = \stackrel{e}{r_t^e} + eta \cdot \stackrel{b_t}{b_t}$$

Encouraging the agent to actively explore,
 especially states that are novel or rare.

- Intrinsic rewards in singleton MDPs has been well-studied
 - Singleton MDP
 - Agent is initialized in the same environment at each episode

- Global (lifelong) intrinsic reward performs well
 - Rely on lifelong experiences.
- ICM, RND, ...

Method	Intrinsic Bonus: $b_{Method}(s_t)$
ICM	$ \hat{\phi}(s_t) - \phi(s_t) _2^2$
RND	$ f(s_t) - \bar{f}(s_t) _2^2$

- Contextual MDP (CMDP)
 - Different episodes correspond to different environments but share structure.
 - Global intrinsic reward fail.
 - Episodic intrinsic reward is preferable.
 - Rely on experiences from current episode.

Results From [1]

$b_{\text{global}}(s) = \frac{1}{\sqrt{N(\psi(s))}}, \ b_{\text{episodic}}(s) = \mathbb{I}[N_e(\psi(s)) = 1]$					
Environment	$ \mathcal{C} $	Global	Episodic		
MultiRoom	1	0.99 ± 0.00	0.83 ± 0.23		
MultiRoom	3	0.59 ± 0.32	0.92 ± 0.13		
MultiRoom	5	0.23 ± 0.39	0.98 ± 0.02		
MultiRoom	10	0.02 ± 0.06	0.78 ± 0.17		
MultiRoom	∞	0.00 ± 0.00	0.87 ± 0.10		

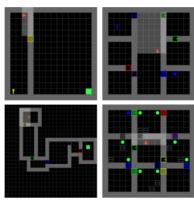
Definitions of CMDP

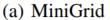
$$(\mathcal{S}, \mathcal{A}, \mathcal{C}, P, r, \mu_C, \mu_S, \gamma)$$

- Introduce context (C)
 - Dynamics $P: \mathcal{S} \times \mathcal{A} \times \mathcal{C} \rightarrow \Delta(\mathcal{S})$
 - Initial states $\mu_S(\cdot|c)$

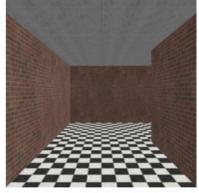
Examples of CMDP

Procedurally generated environments





(b) Crafter



(c) MiniWorld

Related Work

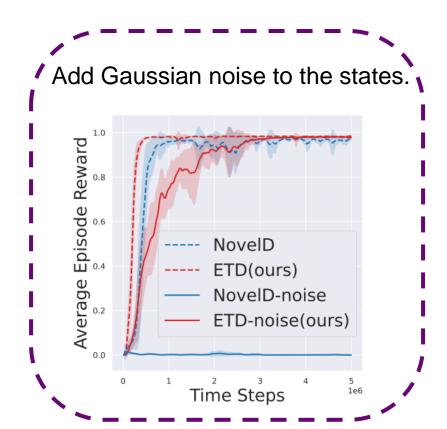
Method	Intrinsic Bonus: $b_{Method}(s_t)$	Episodic Bonus Category
AGAC	$D_{\mathrm{KL}}\left(\pi\left(\cdot\mid s_{t}\right) \ \pi_{\mathrm{adv}}\left(\cdot\mid s_{t}\right)\right) + \beta \cdot \frac{1}{\sqrt{N_{e}(s_{t+1})}}$	Count
RIDE	$\left\ \phi\left(s_{t+1}\right) - \phi\left(s_{t}\right)\right\ _{2} \cdot \frac{1}{\sqrt{N_{e}(s_{t})}}$	Count
NovelD	$[b_{\text{RND}}(s_{t+1}) - b_{\text{RND}}(s_t)]_+ \cdot \mathbb{I}[N_e(s_t) = 1]$	Count
NGU	$b_{ ext{RND}}(s_t) \cdot \frac{1}{\left(\sqrt{\sum_{\phi_i \in N_k} K(\phi(s_t), \phi_i)} + c\right)}$	Similarity
ЕЗВ	$\phi\left(s_{t}\right)^{\top}\left[\sum_{i=0}^{t-1}\phi\left(s_{i}\right)\phi\left(s_{i}\right)^{\top}+\lambda I\right]^{-1}\phi\left(s_{t}\right)$	Similarity
EC	$\alpha(\beta - F\{C(s_i, s_t)\}_{i \in M })$	Similarity
DEIR	$\min_{i \in M } \left\{ \frac{ \phi(s_i), \phi(s_t) ^2}{ \phi_{\text{rnn}}(s_i), \phi_{\text{rnn}}(s_t) } \right\}$	Similarity

A summary of recent research on CMDP exploration

Limitations of Current Episodic Bonus

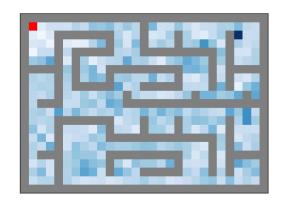
- Count-based
 - Hard to scale large state space
 - Example
 - NovelD:

$$[b_{\text{RND}}(s_{t+1}) - b_{\text{RND}}(s_t)]_+ \cdot \mathbb{I}[N_e(s_t) = 1]$$

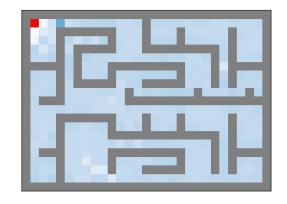


Limitations of Current Episodic Bonus

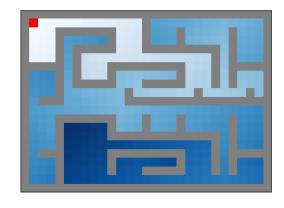
- Similar-based
 - Current similarity measurement is not suitable.



Euclidean distance under inverse dynamics representation (e.g., NGU, E3B)



Reachability probability (e.g., EC, DEIR)



Temporal Distance (Expected)
The focus of this work

Our Work

- Consider CMDP sparse reward problem
 - Using temporal distance as a metric for state similarity
 - Design a new episodic bonus
 - Encourage agents to explore states that are temporally distant from their episodic history.

 We named our method, ETD (Episodic Novelty Through Temporal Distance)

Our Proposed

- Assume we have already obtained the temporal distance function:
 - $d_{\phi}(x,y): \mathcal{S} \times \mathcal{S} \to \mathbb{R}$
- Episodic bonus defined as:
 - The minimum temporal distance between the current state and all states in the episode history.

 S_0 S_1 S_t Online data collecting (s_t, a_t, r_t) **CNN Feature** Extractor Episodic memory $d_{\phi}(s_i, s_t)$

Prevent repeated state visits.

Avoid staying in areas with easy-to-reach.

$$b_t = \min_{i \in [0,t)} d_{\phi}(s_i, s_t)$$

Temporal Distance Definitions

- Temporal distance
 - Probability of reaching from x to y

$$p_{\gamma}^{\pi}(s^f = y|s_0 = x) = (1 - \gamma) \sum_{k=0}^{\infty} \gamma^k p^{\pi}(s_k = y|s_0 = x).$$

Propose to use Successor Distance [2]

$$d_{\text{SD}}^{\pi}(x,y) = \log \left(\frac{p_{\gamma}^{\pi}(s_f = y|s_0 = y)}{p_{\gamma}^{\pi}(s_f = y|s_0 = x)} \right)$$

 $-\log (from x to y - from y to y)$

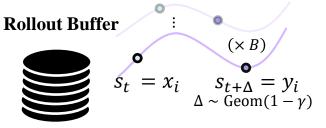
 \approx Hitting time from x to y

Satisfy quasimetric

(Positivity, Identity, Triangle Inequality)

Temporal Distance Learning

1. Sampling positive pairs $\{x_i, y_i\}_{i=1}^B$

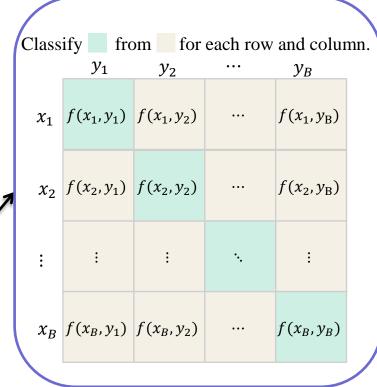


2. Specially parameterized energy function

$$f_{(\psi,\phi)}(x,y) \coloneqq c_{\psi}(y) - \begin{bmatrix} d_{\phi}(x,y) \\ S \times S \to \mathbb{R} \end{bmatrix}$$
 Energy function Potential function Quasimetric function $S \times S \to \mathbb{R}$ $S \times S \to \mathbb{R}$

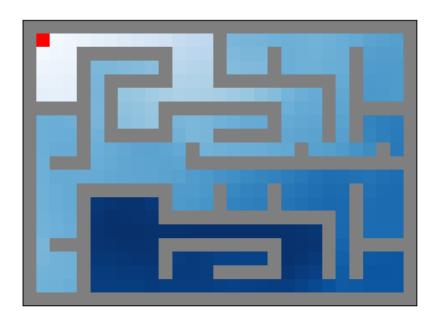
3. Optimize the symmetric InfoNCE loss

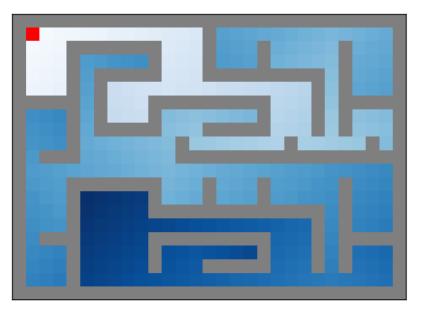
$$\mathcal{L}_{(\phi,\psi)} = \sum_{i=1}^{B} \left[\log \frac{\exp(f_{(\phi,\psi)}(x_i, y_i))}{\sum_{j=1}^{B} \exp(f_{(\phi,\psi)}(x_i, y_j))} + \log \frac{\exp(f_{(\phi,\psi)}(x_i, y_i))}{\sum_{j=1}^{B} \exp(f_{(\phi,\psi)}(x_j, y_i))} \right]$$



 $d_{\phi}^{*}(x, y) \approx \text{ temporal distance from } x \text{ to } y$

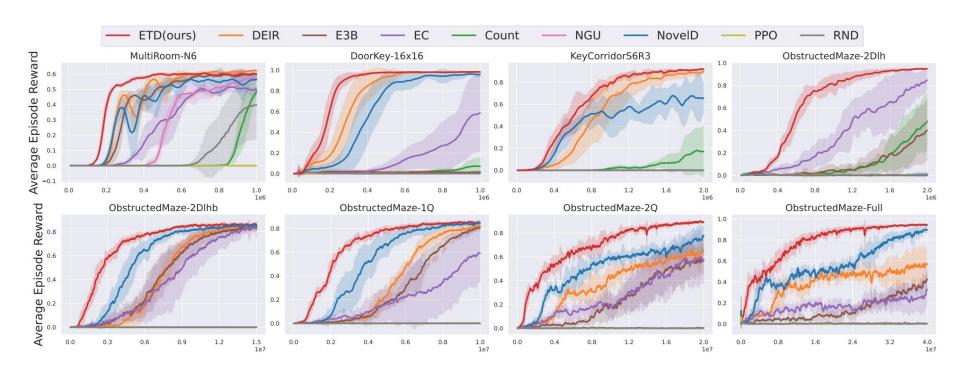
Temporal Distance Experiments





Ours Ground Truth

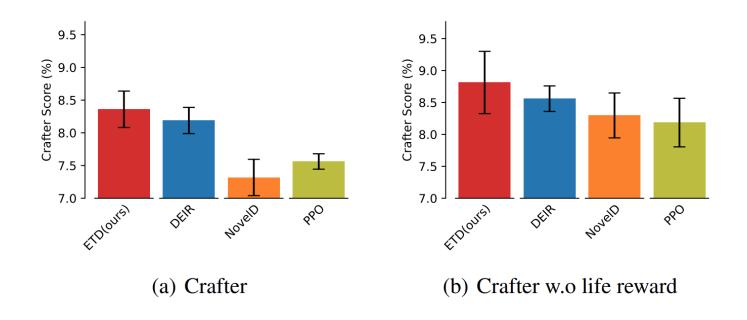
Performance on Exploration Tasks: MiniGrid



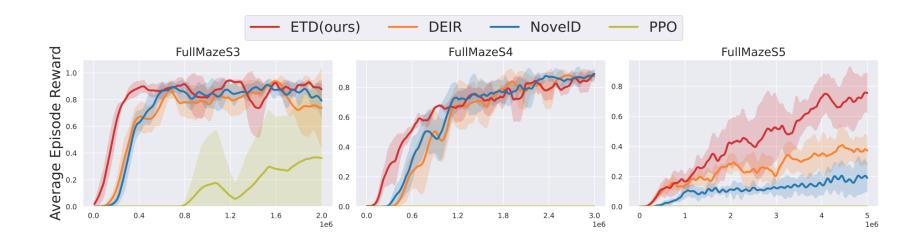
Experiments in MiniGrid with noise



Experiments in Pixel-based Tasks: Crafter



Experiments in Pixel-based Tasks: MiniWorld



Ablations of energy functions

$$f_{\phi,\cos}(x,y) = \frac{\langle \phi(x),\phi(y)\rangle}{\|\phi(x)\|_2\|\phi(y)\|_2},$$

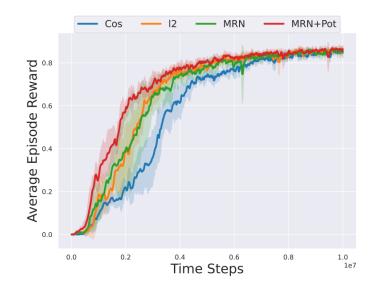
$$f_{\phi,\text{MRN}}(x,y) = -\|\phi(x)-\phi(y)\|_2,$$

$$f_{\phi,\text{MRN}}(x,y) = -d_{\phi}(x,y),$$

$$f_{\phi,\psi,\text{MRN}+\text{POT}}(x,y) = \psi(y) - d_{\phi}(x,y).$$

Both indicates: MRN+POT > MRN = I2 > Cos

The more closely with the temporal distance, The higher the exploration efficiency.



Takeaways

Episodic Bonus is crucial for CMDPs.

 Using temporal distance as a similarity metric for bonus design can significantly improve exploration efficiency.

Code is available at https://github.com/Jackory/ETD.

Thanks!

Code is available at https://github.com/Jackory/ETD.

