Semantic Image Inversion and Editing using Rectified Stochastic Differential Equation

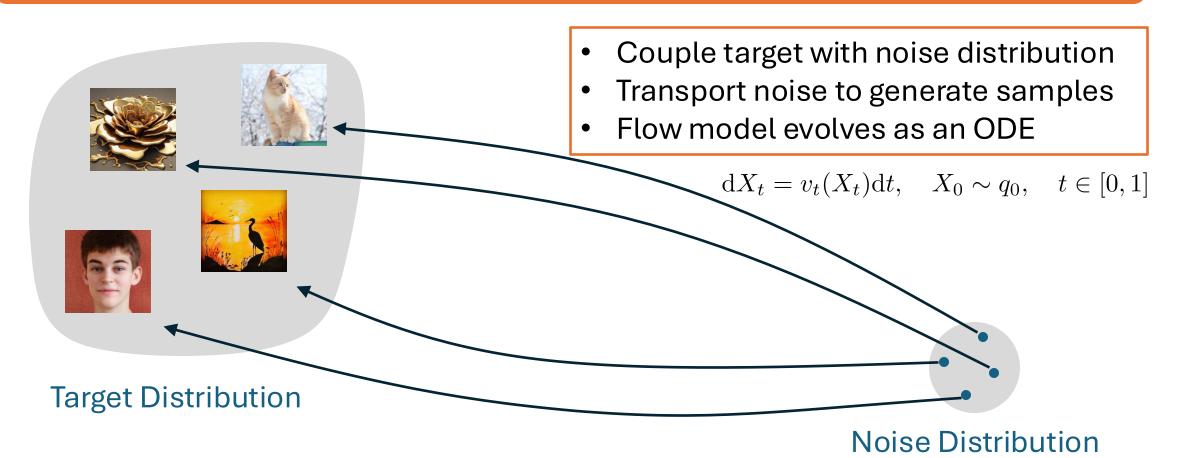
Litu Rout

Based on joint work with: Yujia Chen, Nataniel Ruiz, Wen-Sheng Chu, Constantine Caramanis, and Sanjay Shakkottai

The University of Texas at Austin, Google Research, Google DeepMind

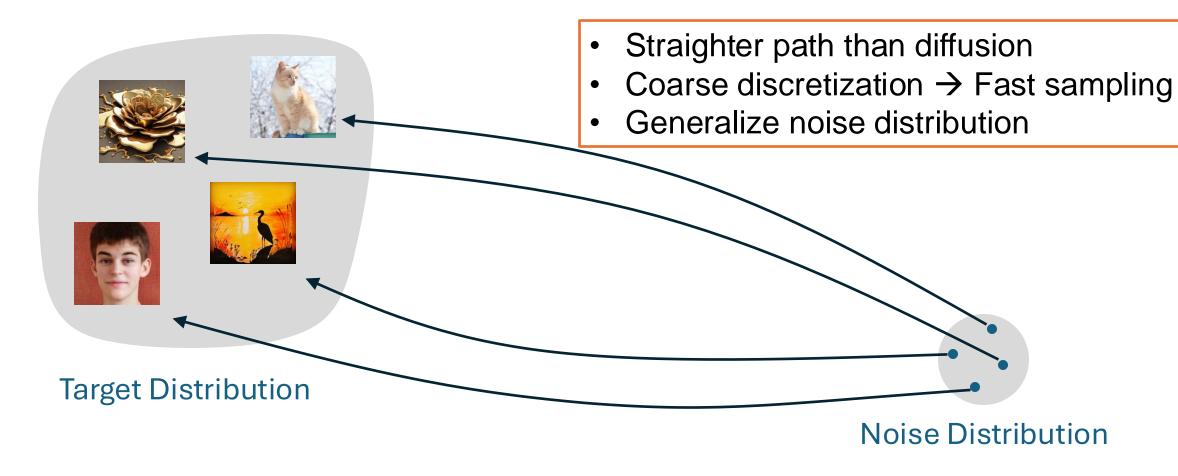
Goal of Rectified Flows

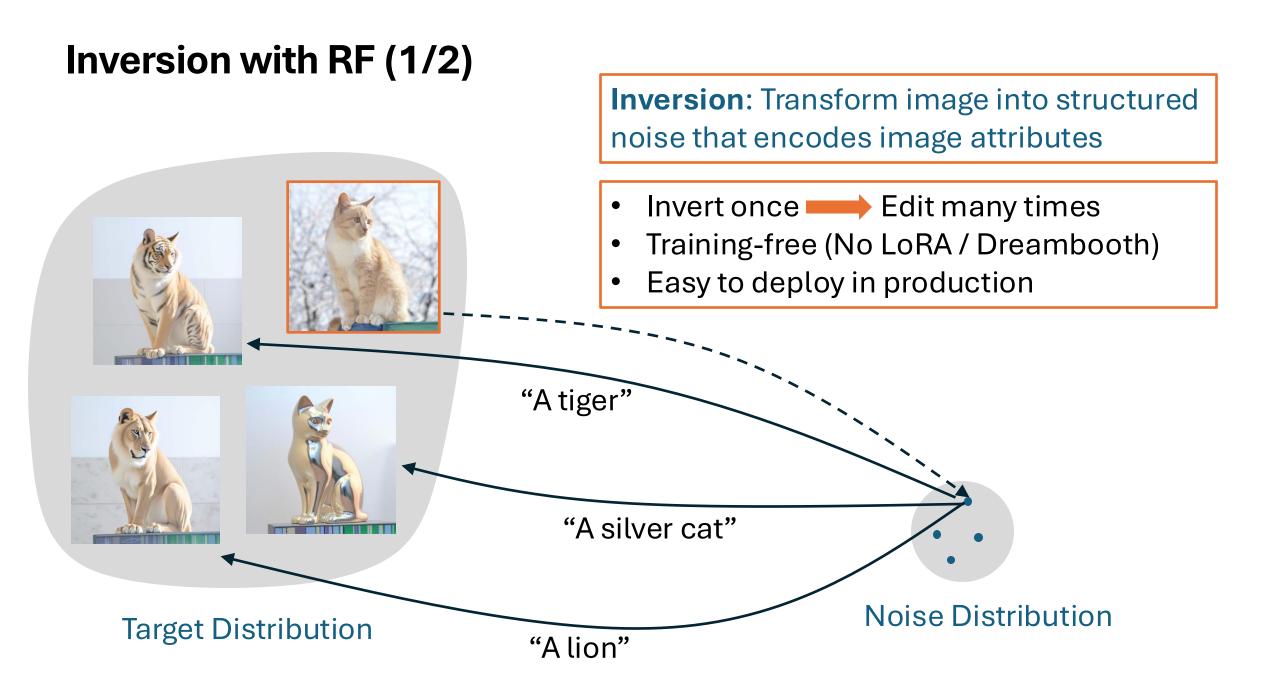
Generate samples from a target distribution given a (large) finite number of samples from that distribution



Benefit of Rectified Flows

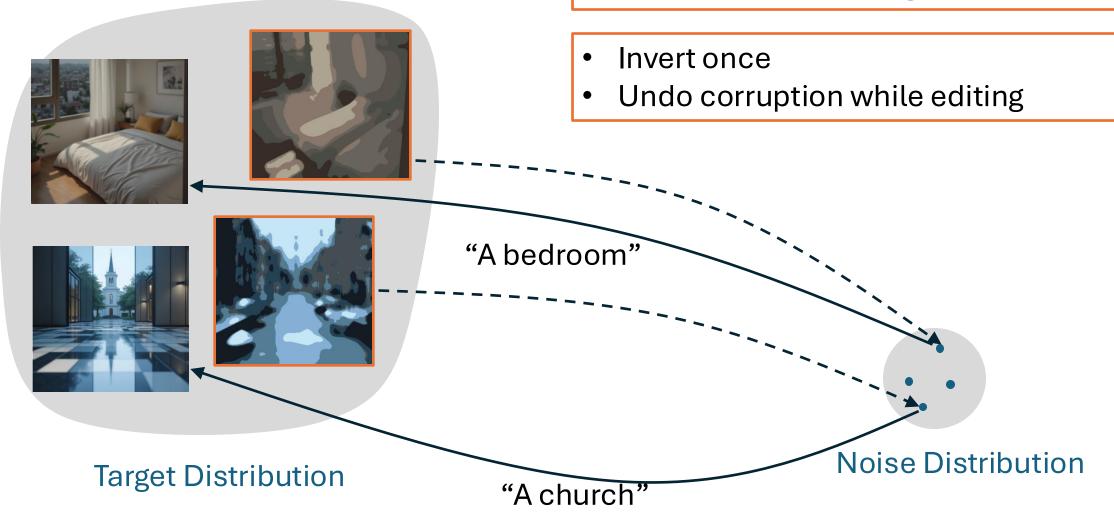
Generate samples from a target distribution given a (large) finite number of samples from that distribution





Inversion with RF (2/2)

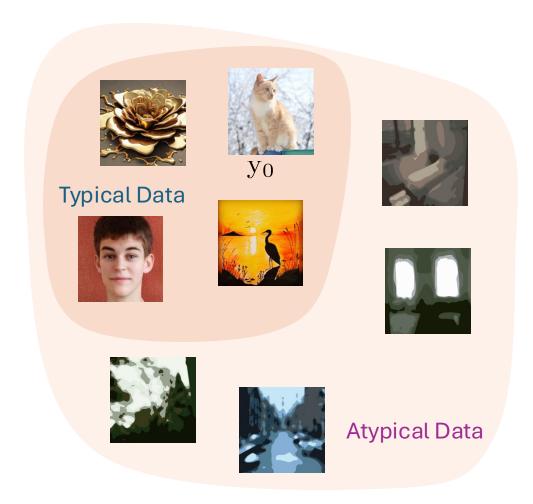
Inversion: Transform image into structured noise that encodes image attributes

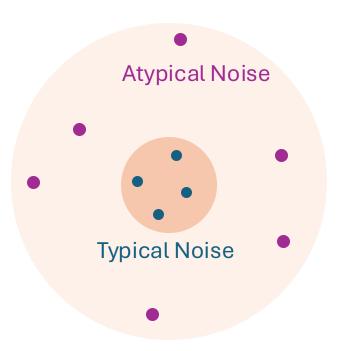


State-of-the-art Image Inversion

- Recent work (Flux, SD3.5) shows rectified flows can outperform diffusion
- No algorithm to directly invert and edit using rectified flows
- Other approaches available for diffusion models
 - Inversion possible through SDEdit and DDIM inversion (for diffusions) but ...
 - They lead to inconsistencies (preservation of conditioning structure/layout) due to highly non-linear sample paths
 - Alternate methods maintain consistency through expensive training (e.g., DreamBooth, LoRA), test-time optimization (RB Modulation), or complex attention processors (NTI, P2P)

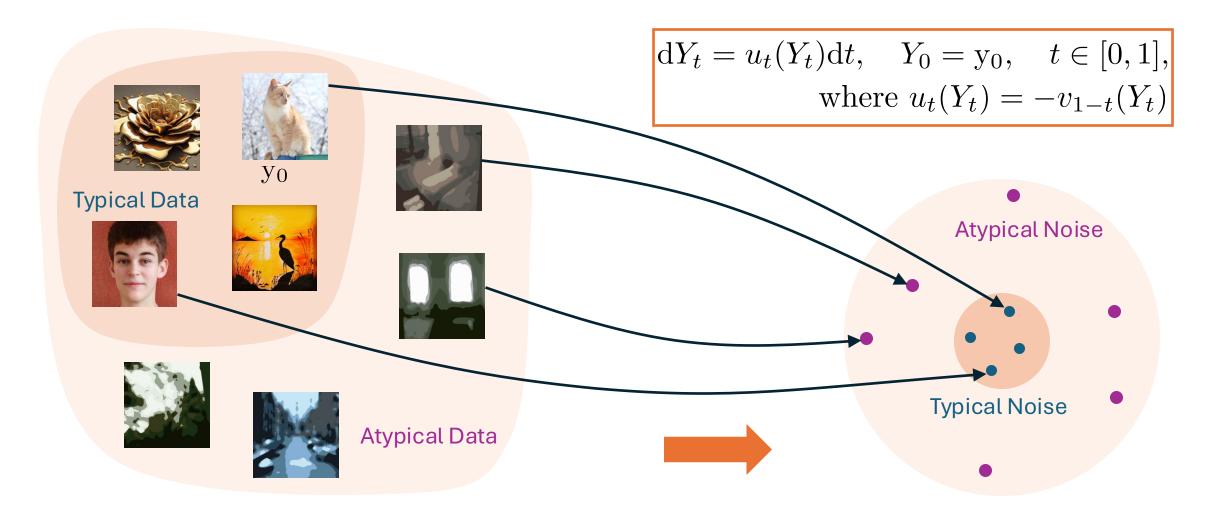
Inversion using Rectified Flows





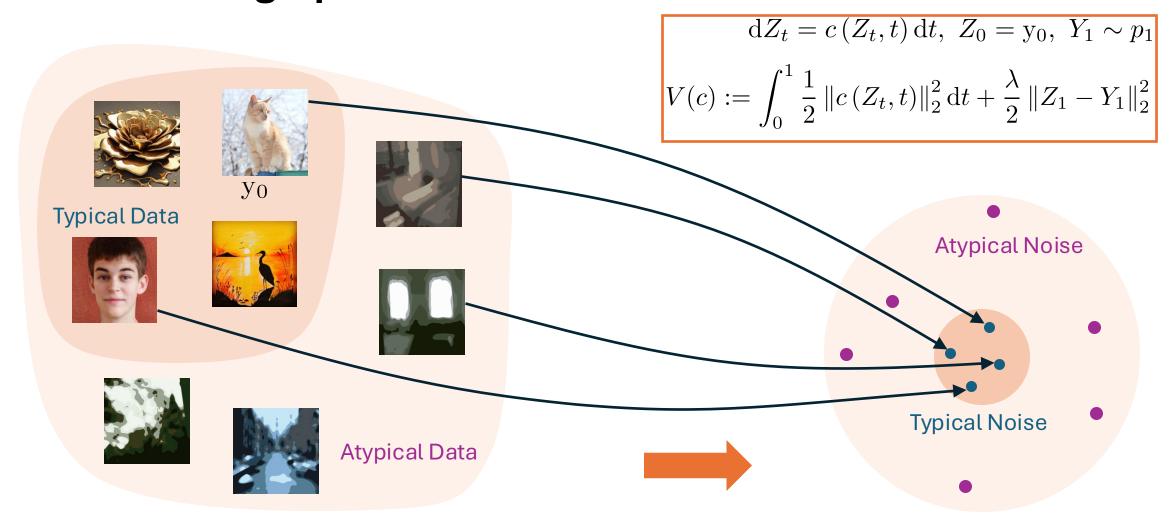
Distributions can be (roughly) grouped into two types: typical and atypical

Inversion using Rectified Flows



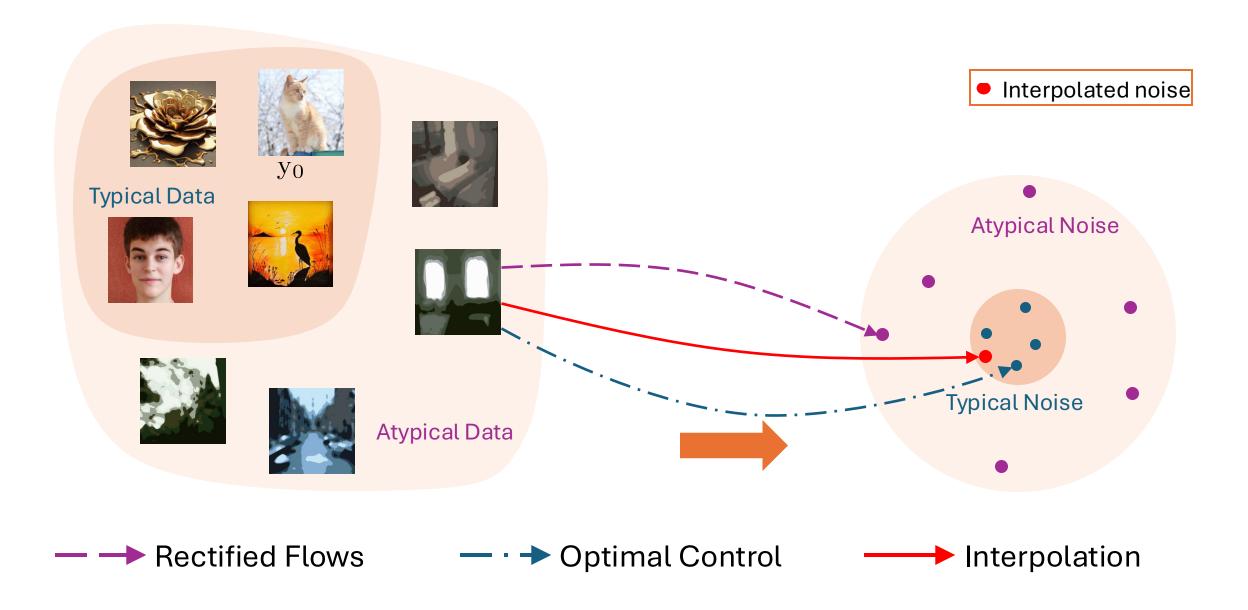
RF transforms typical image to typical noise; atypical image to atypical noise

Inversion using Optimal Control

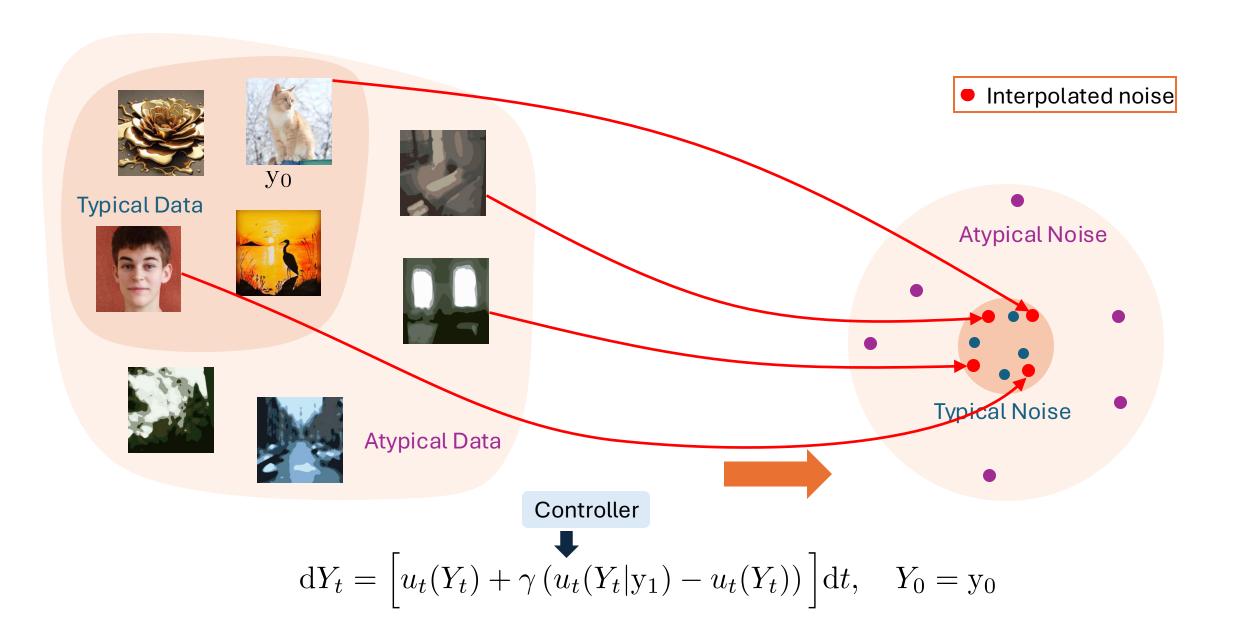


Optimal controller transforms any image to typical noise

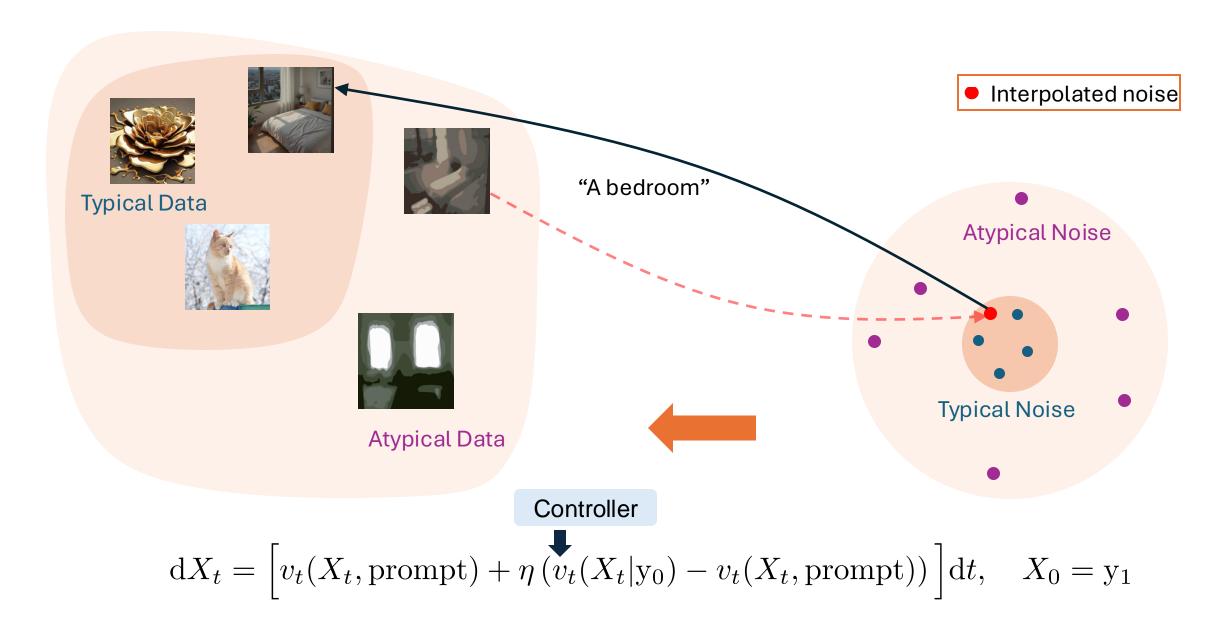
Interpolation of the Two Fields



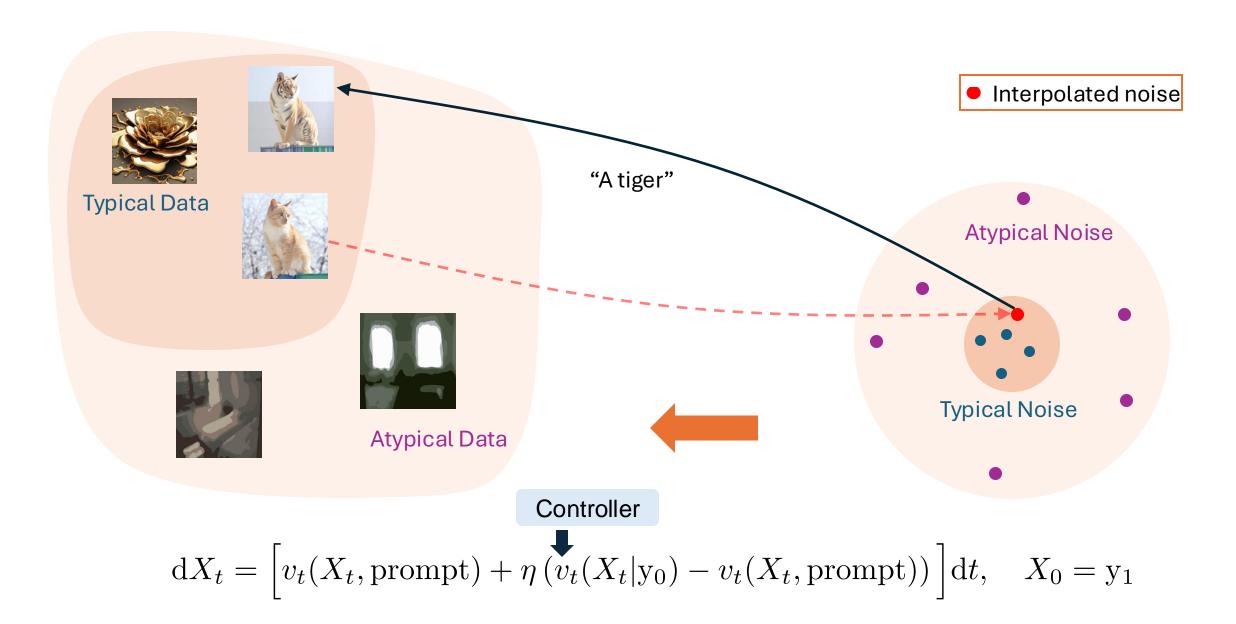
Inversion using Optimally Controlled Rectified Flow



Generation using Optimally Controlled Rectified Flows



Generation using Optimally Controlled Rectified Flows

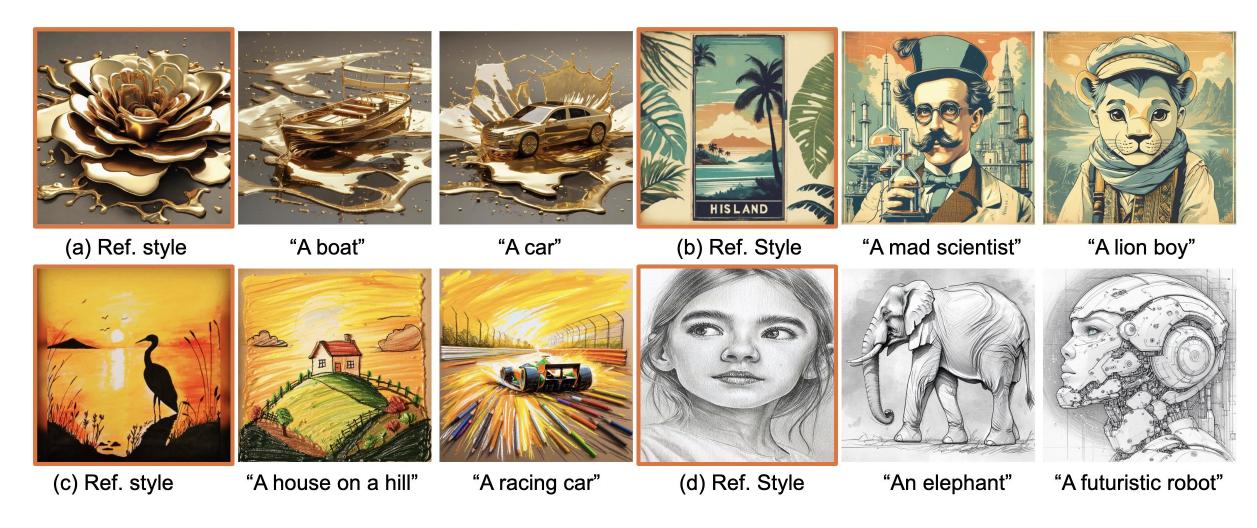


A Stochastic Sampler for RF

- Benefits of a Stochastic Sampler for Rectified Flows
 - Many diffusion-based inversion and editing approaches rely on stochastic nature of the diffusion sampler
 - Higher-order solvers benefit from SDE interpretation of diffusion samplers
 - With finer discretization, SDE samplers outperform deterministic samplers in generative modeling, measured by Frechet Inception Distance (FID)
 - SDE samplers show robustness to corruption in the initial distribution, i.e., their invariant measure remains the same

Experiments: Content-style composition

Experiments: Generalization to another flow model SD3.5



(a,b) Generated reference style (c,d) Hand drawn reference style

Experiments: Generative modeling using rectified flow SDE

Flux

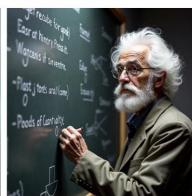
FluxSDE (Ours)

Prompt: "portrait, looking to one side of frame, lucid dream-like 3d model of an owl, video game character, forest, wonderland, photorealism, cinematic artistic style."

Prompt: "a dragon soaring through the sky, battle ground, people fighting on the ground."

FluxSDE (Ours)

Prompt: "a robot with a reflective helmet, iron armor, photorealistic, in shades of red and golden brown, dark gloomy environment, epic scene."



Prompt: "a genius scientist, in his 60s, standing, writing on the black board, white hair, white beard, round spectacles."

Semantic Image Inversion and Editing using Stochastic Rectified Differential Equations

Litu Rout^{1,2} Yujia Chen² Nataniel Ruiz²
Constantine Caramanis¹ Sanjay Shakkottai¹ Wen-Sheng Chu²

¹ The University of Texas at Austin, ² Google

ICLR 2025

[Paper] [arXiv] [Code] [ComfyUI] [Diffusers]

